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Overview of Talk

• (BRIEF!) Review of Standard Approach to Substructure

• Basics of Qjets approach, application to W jets

• 2 main aspects of Qjets:

• 1: statistical improvement (non-Poissonian)

• 2: new types of jet variables (example: “Volatility”)

• towards theoretical improvements (e.g., resummation of Qjet 
observables, “Qthrust”)
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Standard Jet Substructure Technique	

• from Jet (particles or constituents) get Tree 

• done using algorithm to find the “best” tree (e.g., CA or kT)

• see if tree has structure

• examples:

• BDRS (mass-drop + filtering)

• Grooming (pruning & trimming)

• top-tagging (JHU, HEP, ...)

• N-jettiness
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Basics of Qjets	

• substructure assumes a shower creates trees, and best tree is 
good enough

Summary so far 
•  Existence of jets comes from collinear singularities in QCD 
•  In collinear limit, interference is unimportant  
                        and semi-classical picture applies 
•  Parton showers use a semi-classical Markov process to simulate QCD 
•  Jet algorithms attempt to invert the parton-to-jet mapping 

Jet Algorithms 

Parton 
Shower 

•  This is a great first approximation,  
                             but reality is much more interesting • not really one-to-one, invertible

• “structure” can be highly dependent on 
which tree you take, especially for QCD
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Basics of Qjets	

• substructure assumes a shower creates trees, and best tree is 
good enough

• however, even if we knew “best” tree, many other options 
(showering itself is a random/markovian process), and 
interference + UE contamination complicates this even 
more....

• “structure” can be highly dependent on which tree you take, 
especially for QCD
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Basics of Qjets	
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• Qjets: take all (or many trees)

• example: apply pruning to the various recombinations allowed 
within a single jet
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Qjets in practice

• too many trees to consider all

• can sample kT like (or CA like) randomly:

• at each stage, choose to merge pair w/ prob. 

• this gives a tree, on which any 

• results in a distribution for each jet

• (typically) stable after ~100 runs

(and 100 << 10! to 20!)

2

assigned to the trees is reduced and we find that we can
use process-independent weights.

The idea we have described – associating a weighted
set of trees to a jet – would not be feasible if one had to
consider every tree which could be formed from a given
set of final state four-momenta in a jet. Fortunately, good
approximations to such weighted distributions obtained
using every tree can be captured through a procedure
analogous to Monte-Carlo integration, allowing us to use
a very small fraction of the trees. This can be achieved
since infrared and collinear safe jet observables must be
insensitive to small reshu⇧ings of the momenta, implying
that large classes of trees give very similar information.

The algorithm we propose, which assembles a tree via
a series of 2 ⌅ 1 mergings, functions as follows:

1. At every stage of clustering, a set of weights ⇤ij for
all pairs �ij of the four-vectors is computed, and
a probability ⇥ij = ⇤ij/N , where N =

⌃
�ij⇥ ⇤ij is

assigned to each pair.

2. A random number is generated and used to choose
a pair �ij with probability ⇥ij . The chosen pair
is merged, and the procedure is repeated until all
particles all clustered.

This algorithm directly produces trees distributed ac-
cording to their weight

⌥
mergings ⇥ij . To produce a dis-

tribution of the observable for each jet, this algorithm is
simply repeated a number of times, yielding a di⇤erent
tree (essentially) every time. Note that any algorithm
which modifies a tree during its construction (e.g., jet
pruning) can be adapted to work with this procedure as
demonstrated below.

One particularly interesting class of weights ⇤(�)
ij ,

parametrized by a continuous real number � we term
rigidity is given by

⇤(�)
ij ⇥ exp

⇤
��

(dij � dmin)

dmin

⌅
. (1)

Here, dij is the jet distance measure for the �ij pair,
e.g.,

dij =

⇧
dkT ⇥ min{p2Ti, p

2
Tj}�R2

ij

dC/A ⇥ �R2
ij

, (2)

where �R2
ij = �y2ij + �⇥2

ij , and dmin is the minimum
over all pairs at this stage in the clustering. Note that
with this metric, our algorithm reduces to a traditional
clustering algorithm of the type defined by the distance
dij when � ⌅ ⇧, i.e., in that limit the minimal dij is
always chosen. In this sense, it is helpful to think of
the traditional, single tree algorithm as the “classical”
approach, and � ⇤ 1/~ controlling the deviation from
the “classical” clustering behavior. With this analogy,
we call the trees constructed in this non-deterministic

FIG. 1. Distribution of pruned jet mass for a single boosted
QCD-jet in a single event with pT � 500 GeV. The black
and red solid lines show the classical pruned masses when
C/A and kT algorithms are used to cluster the jet. The black
and dashed (red and dot-dashed) line shows the pruned jet
mass distribution of 1000 Q-jets (constructed from the same
jet in the same event), when the C/A (kT) measure is used
in Eq. (1). These distributions result from clusterings with
rigidity � = 1.0 (top) and � = 0.01 (bottom).

fashion Q-jets (“quantum” jet) and the number of trees
used NQ-jet.
We now demonstrate, as an illustrative example, how

the use of Q-jets can have important e⇤ects in an analy-
sis employing jet pruning to study hadronically decaying
boostedW s. As described in Ref. [6] pruning is one of the
jet grooming tools [7] used to sharpen signal and reduce
background when considering boosted heavy objects. It
functions by modifying the mergings in a given tree that
involve both a large angular separation and asymmetric
energy sharing by removing the lower energy daughter
from the tree. In detail, if a clustering algorithm at-
tempts to cluster two four-momenta i and j which satisfy

zij ⇥
min

�
pTi , pTj

⇥

| ◆pTi + ◆pTj |
< zcut and

�Rij > Dcut ,

(3)

then the merging is vetoed and the softer of the two four-
momenta is discarded. By applying jet pruning to a set
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Qjets in Practice: our (ad hoc) metric

• α ≡ “ridigity”:
•  α → ∞, exact CA (kT)
•  α → 0, all combos equal

• CA and kT are “close” for small enough α:
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Application I: Statistics

• Classical:

• assumptions:

• 1) production is Poisson:

• 2) if 1 event has prob.       of being tagged (“tagging efficiency”)

⇒ tagging (for fixed #n) is binomial: 
⇒ tagging (for any n) is also Poisson:

3

1. INTRODUCTION

2. QJETS: THE GENERIC ALGORITHM

TODO
verba-

tim

from

PRL!!

(TODO)
The idea we have described – associating a weighted set of trees to a jet – would not be feasible if one had

to consider every tree which could be formed from a given set of final state four-momenta in a jet. Fortunately,
good approximations to such weighted distributions obtained using every tree can be captured through a procedure
analogous to Monte-Carlo integration, allowing us to use a very small fraction of the trees. This can be achieved
since infrared and collinear safe jet observables must be insensitive to small reshu✏ings of the momenta, implying
that large classes of trees give very similar information.

The algorithm we propose, which assembles a tree via a series of 2 ! 1 mergings, functions as follows:

1. At every stage of clustering, a set of weights !ij for all pairs hiji of the four-vectors is computed, and a probability
⌦ij = !ij/N , where N =

P
hiji !ij is assigned to each pair.

2. A random number is generated and used to choose a pair hiji with probability ⌦ij . The chosen pair is merged,
and the procedure is repeated until all particles all clustered.

This algorithm directly produces trees distributed according to their weight
Q

mergings ⌦ij . To produce a distribution
of the observable for each jet, this algorithm is simply repeated a number of times, yielding a di↵erent tree (essentially)
every time. Note that any algorithm which modifies a tree during its construction (e.g., jet pruning) can be adapted
to work with this procedure as demonstrated below.

One particularly interesting class of weights !(↵)
ij , parametrized by a continuous real number ↵ we term rigidity is

given by

!
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�↵
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�
. (1)

Here, dij is the jet distance measure for the hiji pair, e.g.,

dij =

(
dkT ⌘ min{p2Ti, p

2
Tj}�R2

ij

dC/A ⌘ �R2
ij

, (2)

where �R2
ij = �y2ij + ��2

ij , and dmin is the minimum over all pairs at this stage in the clustering. Note that with
this metric, our algorithm reduces to a traditional clustering algorithm of the type defined by the distance dij when
↵ ! 1, i.e., in that limit the minimal dij is always chosen. In this sense, it is helpful to think of the traditional,
single tree algorithm as the “classical” approach, and ↵ ⇠ 1/h̄ controlling the deviation from the “classical” clustering
behavior. With this analogy, we call the trees constructed in this non-deterministic fashion Qjets (“quantum” jet)
and the number of trees used NQjet.

3. STATISTICS FORMALISM

In this section, we begin by reviewing the statistics typically assumed in standard (or “classical”) particle physics
analyses. For concreteness, we focus on the case of reconstructing events (or jets such as in substructure analyses),
e.g., that of correctly identifying the mass of a particle to be within some mass window. We then discuss the e↵ects
on these statistics when, as in Qjet analyses, a fraction of the NQjets assigned to a given jet are reconstructed.

A. Classical Statistics

In the classical case, where each jet is either successfully reconstructed or not, the probability that r jets are
reconstructed for fixed total n jets are produced with reconstruction e�ciency for each jet ✏cl is assumed to be
binomially distributed, B✏cl(n; r), where

B✏(n; r) ⌘ nCr✏
r(1� ✏)n�r . (3)
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In addition, the number of jets produced n is Poissonian with mean hni = N (equal to the luminosity times the
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Taken together, the distribution for producing n jets with r successfully reconstructed is given by F✏cl,N (r|n), where
F✏,N (r|n) = PN (n)B✏(n; r). The probability distribution that r jets are reconstructed for any n, F✏cl,N (r), is itself
Poissonian distributed with mean N✏,
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The mean and variance of this distribution are both given by N✏cl,
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The classical relative uncertainty is given by the familiar expression
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B. Qjet Statistics

The key di↵erence a↵ecting the statistics of the Qjet approach is that, in place of the binary result that a jet is
either being reconstructed successfully or not, we assign a real number representing the fraction of Qjets that are
reconstructed for each jet. Denote the relative fraction of times that a fraction x of the Qjets in a single jet are
reconstructed f1(x), and the mean and standard deviation of this distribution ✏Q (the analog of the classical e�ciency
✏cl) and �1, respectively.

Likewise, in an experiment with n total jets, fn(x) is the probability distribution for the number of times a fraction
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In terms of the mean and variance of the single jet distribution f1(x), those of the n-jet distributions are given by
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respectively. As for the classical case, we can account for the Poissonian nature of the number of produced jets n
given the average hni = N ⌘ �L and compute the expected number of reconstructed jets (the analog of Eq. (6))
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The key di↵erence a↵ecting the statistics of the Qjet approach is that, in place of the binary result that a jet is
either being reconstructed successfully or not, we assign a real number representing the fraction of Qjets that are
reconstructed for each jet. Denote the relative fraction of times that a fraction x of the Qjets in a single jet are
reconstructed f1(x), and the mean and standard deviation of this distribution ✏Q (the analog of the classical e�ciency
✏cl) and �1, respectively.

Likewise, in an experiment with n total jets, fn(x) is the probability distribution for the number of times a fraction
x of the entire ensemble of Qjets is reconstructed, i.e., (TODO) TODO
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In terms of the mean and variance of the single jet distribution f1(x), those of the n-jet distributions are given by
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given the average hni = N ⌘ �L and compute the expected number of reconstructed jets (the analog of Eq. (6))
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Application I: Statistics

• Qjets: distributions have an overlap (∈[0,1]), not binomial!

• tagging now a distribution f1(x):

• 1) production is Poisson

• 2) tagging (for fixed #n) is binomial

3

a probability ⌦ij = !ij/N , where N =
P

hiji !ij is
assigned to each pair.

2. A random number is generated and used to choose
a pair hiji with probability ⌦ij . The chosen pair
is merged, and the procedure is repeated until all
particles all clustered.

This algorithm directly produces trees distributed ac-
cording to their weight

Q
mergings ⌦ij . To produce a dis-

tribution of the observable for each jet, this algorithm is
simply repeated a number of times, yielding a di↵erent
tree (essentially) every time. Note that any algorithm
which modifies a tree during its construction (e.g., jet
pruning) can be straightforwardly adapted to work si-
multaneously with this procedure.

STATISTICS FORMALISM

In this section, we begin by reviewing the statistics
typically assumed in standard (or “classical”) particle
physics analyses. For concreteness, we focus on the case
of reconstructing events (or jets such as in substructure
analyses), e.g., that of correctly identifying the mass of a
particle to be within some mass window. We then discuss
the e↵ects on these statistics when, as in Qjet analyses,
a fraction of the NQjets assigned to a given jet are recon-
structed.

Classical Statistics

In the classical case, where each jet is either success-
fully reconstructed or not, the probability that r jets are
reconstructed for a fixed total number n of produced jets
with reconstruction e�ciency for each jet ✏cl is assumed
to be binomially distributed, B✏cl(n; r), where

B✏(n; r) ⌘ nCr✏
r(1 � ✏)n�r

. (1)

In addition, the number of jets produced n is Poissonian
with mean hni = N (equal to the luminosity times the
cross-section, N = �L) (TODO) , given by the expres-TODO

for suf-
ficiently
large N

- comes
from
limit of
bino-
mial,
no?

sion

PN (n) ⌘ e

�N
N

n

n!
. (2)

Taken together, the distribution for producing n jets with
r successfully reconstructed is given by F✏cl,N (r|n), where
F✏,N (r|n) = PN (n)B✏(n; r). The probability distribution
that r jets are reconstructed for any n, F✏cl,N (r), is itself
Poissonian distributed with mean N✏,

F✏,N (r) ⌘
1X

n=r

F✏,N (r|n) =
e

�N✏
N

r
✏

r

r!
⌘ PN✏(r) . (3)

Application 1: discovery of W 
When there is an intrinsic mass scale for a jet, the pruned jetmass 

is more of less robust under variation of paths.

W jet QCD jet with m/pT < 1/2}mass window

jet mass

fraction (x)Qjet Dist.

FIG. 2. An illustration of how the single jet distribution f1(x)
is defined. For each jet out of a ensemble ofN jets, the overlap
between the Qjet distribution and a given mass window is
defined as x (with 0 < x < 1); the fraction of jets that have
overlap x over the ensemble of jets is f1(x) (for N ! 1).

The mean and variance of this distribution are both given
by N✏cl,

�cl ⌘ hri =
1X

r=0

rF✏cl,N (r) = N✏cl , (4)

and

��

2
cl ⌘ h(r�hri)2i =

1X

r=0

(r�N✏cl)
2
F✏cl,N (r) = N✏cl . (5)

The classical relative uncertainty is given by the familiar
expression

��cl

�cl
=

1p
N✏cl

. (6)

Qjet Statistics

The key di↵erence a↵ecting the statistics of the Qjet
approach is that, in place of the binary result that a jet is
either being reconstructed successfully or not, we assign
a real number representing the fraction of Qjets that are
reconstructed for each jet. Denote the relative fraction
of times that a fraction x of the Qjets in a single jet are
reconstructed f1(x). This is illustrated in Fig. 2. Denote
the mean and standard deviation of this distribution ✏Q

(the analog of the classical e�ciency ✏cl) and �1, respec-
tively.

Likewise, in an experiment with n total jets, fn(x) is
the probability distribution for the number of times a
fraction x of the entire ensemble of Qjets is reconstructed,
i.e., (TODO) TODO

note:
Dave’s
not’n
had x =
sum,
not avg
here;
Dave’s
version
written
but
com-
mented
out in
tex
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Application I: Statistics

• Qjets: distributions have an overlap (∈[0,1]), not binomial!

• tagging now a distribution f1(x)

• upshot:

5

and the variance of this distribution (the analog of Eq. (7))

��2
Q ⌘ h(yn� hyni)2i =

1X

n=0

PN (n)

Z 1

0
(y n� ✏QN)2fn(y) = (✏2Q + �2

1)N . (13)

This gives that the relative uncertainty for Qjets is

��Q

�Q
=

r
1 + (�1/✏Q)2

N

=
��cl

�cl

q
✏(1 + (�1/✏Q)2) . (14)

Note that for generic ✏Q, ✏cl, and �1, this is not a priori an improvement. The precise values of the parameters that
control the statistical stability of ensembles of Qjet samples, ✏Q and �1, clearly depends on the choice of the set
of Qjets assigned to a given jet and on the relative weights assigned to each Qjet, as discussed in the next section.
However, for the physically reasonable class of metrics governing these assignments that we consider, we generically
find that while the e�ciency is reduced relative to the classical case, ✏Q < ✏cl, this is more than compensated for by
the width �1 resulting in significantly reduced uncertainties.

C. Qjet Statistics Applied to Toy Models for Backgrounds

4. DEPENDENCE ON THE CHOICE OF METRIC

5. EXAMPLE I: W TAGGING

6. EXAMPLE II: HIGGS TAGGING IN H ! bb̄

7. EXAMPLE III: TOP TAGGING

8. CONCLUSION

9. ACKNOWLEDGEMENTS
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In addition, the number of jets produced n is Poissonian with mean hni = N (equal to the luminosity times the
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B. Qjet Statistics

The key di↵erence a↵ecting the statistics of the Qjet approach is that, in place of the binary result that a jet is
either being reconstructed successfully or not, we assign a real number representing the fraction of Qjets that are
reconstructed for each jet. Denote the relative fraction of times that a fraction x of the Qjets in a single jet are
reconstructed f1(x), and the mean and standard deviation of this distribution ✏Q (the analog of the classical e�ciency
✏cl) and �1, respectively.

Likewise, in an experiment with n total jets, fn(x) is the probability distribution for the number of times a fraction
x of the entire ensemble of Qjets is reconstructed, i.e., (TODO) TODO
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In terms of the mean and variance of the single jet distribution f1(x), those of the n-jet distributions are given by
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respectively. As for the classical case, we can account for the Poissonian nature of the number of produced jets n
given the average hni = N ⌘ �L and compute the expected number of reconstructed jets (the analog of Eq. (6))
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• 1) production is Poisson

• 2) tagging (for fixed #n) is binomial
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f1(x) function for the α-weight

• background (QCD): • signal (W):

→ <x2>/<x> decr. w/ α (away from “classical”)
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Application I: Statistics: W-jet Example

Application 2:  CS measurement 
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Application I: Statistics: W-jet Example
• Signal = boosted W-jets, pT > 500

• BG = light QCD jets, pT > 500

•Measure the signal size in a bin (here 70-90 GeV) and 
compare it to the size of the BG fluctuations (Poisson 
stats included)

⇒ ~ factor of 2 in luminosity needed for given 
significance

Need fewer events for same precision 

Algorithm Mass uncertainty 
 

Relative Luminosity 
required 

kT 3.15 GeV 1.00 

Qjets α=0 2.20 GeV 0.50 

Qjets α=0.001 2.04 GeV 0.45 

For example,   
•  Take 10 boosted W events (pT>500)  
•  Construct jet mass 
•  Look at variance of the the mean W-jet mass over many pseudo-experiments 

�hmi

Qjets needs half as much luminosity as conventional jet algorithms 

(“classical” pruning)
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Application II: New Observables

• since Qjets gives distributions for each jet, can now cut on these 
distributions (or more complicated analysis)

• example: “Volatility,” a measure of how ambiguous/“fuzzy” jets are

• QCD jets often have ambiguities, making V larger

• ambiguity larger for smaller m/pT (m ~ pT QCD jets have “real” 
structure)

• Note: Poisson stats for    -cut jets (when mwindow >> mcut)

4

Vol. Rigidity
cut (Vcut) � = 0 � = 0.01 � = 0.1 � = 1 � = 100

�S⇥/�B|Q
�S⇥/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)
0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)
0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)
0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)
None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

��m⇥|cl
��m⇥|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)
0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)
0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)
0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)
None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

�S⇥/�B⇥|Q
�S⇥/�B⇥|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)
0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Q-jet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇤S⌅/⇥B, while
the second shows the average jet mass fluctuation ⇥⇤m⌅. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

and similar numbers would arise for any value above
NQ-jet � 50. The indicated ratios to the classical results
should be independent of ⌃NJ⌥ and we have determined
the values and their uncertainties by fitting to results
for ⌃NJ⌥ = 5, 10, 15, 20. These approximate statistical
uncertainties are shown in parenthesis and apply to the
last digit. We perform 104 repetitions of the pseudo-
experiment and expect at most O(1%) statistical e⇥ects
from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌃S⌥/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as 
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Q-jet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌃m⌥|cl/⇥⌃m⌥|Q (note classical over Q-jets
here). Values greater than unity mean that the mass
can be measured more precisely with the Q-jet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Q-jets compared to classical pruning. For this quantity
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TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
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repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
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⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e⇤ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
While the discussion above certainly suggests that us-

ing Q-jets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from theNQ-jet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌃m⌥ , (4)

where � ⇥
�
⌃m2⌥ � ⌃m⌥2 and ⌃m⌥ are the RMS devia-

tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Q-jets with � = 0.01 is shown in the upper panel of
Fig. 2. On simple physical grounds one expects that sig-
nal jets, i.e., jets that contain an intrinsic mass scale,
will exhibit a lower volatility than QCD jets with no in-
trinsic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
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0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Q-jet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇤S⌅/⇥B, while
the second shows the average jet mass fluctuation ⇥⇤m⌅. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

and similar numbers would arise for any value above
NQ-jet � 50. The indicated ratios to the classical results
should be independent of ⌃NJ⌥ and we have determined
the values and their uncertainties by fitting to results
for ⌃NJ⌥ = 5, 10, 15, 20. These approximate statistical
uncertainties are shown in parenthesis and apply to the
last digit. We perform 104 repetitions of the pseudo-
experiment and expect at most O(1%) statistical e⇥ects
from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌃S⌥/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as 
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Q-jet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌃m⌥|cl/⇥⌃m⌥|Q (note classical over Q-jets
here). Values greater than unity mean that the mass
can be measured more precisely with the Q-jet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Q-jets compared to classical pruning. For this quantity
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pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
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repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
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⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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Vol. Rigidity
cut (Vcut) � = 0 � = 0.01 � = 0.1 � = 1 � = 100

�S⇥/�B|Q
�S⇥/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)
0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)
0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)
0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)
None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

��m⇥|cl
��m⇥|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)
0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)
0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)
0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)
None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

�S⇥/�B⇥|Q
�S⇥/�B⇥|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)
0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e⇤ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
While the discussion above certainly suggests that us-

ing Q-jets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from theNQ-jet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌃m⌥ , (4)

where � ⇥
�
⌃m2⌥ � ⌃m⌥2 and ⌃m⌥ are the RMS devia-

tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Q-jets with � = 0.01 is shown in the upper panel of
Fig. 2. On simple physical grounds one expects that sig-
nal jets, i.e., jets that contain an intrinsic mass scale,
will exhibit a lower volatility than QCD jets with no in-
trinsic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
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0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)
0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)
None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)
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0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)
0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)
0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)
0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)
None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)
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0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)
0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Q-jet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇤S⌅/⇥B, while
the second shows the average jet mass fluctuation ⇥⇤m⌅. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

and similar numbers would arise for any value above
NQ-jet � 50. The indicated ratios to the classical results
should be independent of ⌃NJ⌥ and we have determined
the values and their uncertainties by fitting to results
for ⌃NJ⌥ = 5, 10, 15, 20. These approximate statistical
uncertainties are shown in parenthesis and apply to the
last digit. We perform 104 repetitions of the pseudo-
experiment and expect at most O(1%) statistical e⇥ects
from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌃S⌥/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as 
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Q-jet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌃m⌥|cl/⇥⌃m⌥|Q (note classical over Q-jets
here). Values greater than unity mean that the mass
can be measured more precisely with the Q-jet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Q-jets compared to classical pruning. For this quantity
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TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e⇤ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
While the discussion above certainly suggests that us-

ing Q-jets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from theNQ-jet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌃m⌥ , (4)

where � ⇥
�
⌃m2⌥ � ⌃m⌥2 and ⌃m⌥ are the RMS devia-

tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Q-jets with � = 0.01 is shown in the upper panel of
Fig. 2. On simple physical grounds one expects that sig-
nal jets, i.e., jets that contain an intrinsic mass scale,
will exhibit a lower volatility than QCD jets with no in-
trinsic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
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0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)
0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Q-jet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇤S⌅/⇥B, while
the second shows the average jet mass fluctuation ⇥⇤m⌅. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

and similar numbers would arise for any value above
NQ-jet � 50. The indicated ratios to the classical results
should be independent of ⌃NJ⌥ and we have determined
the values and their uncertainties by fitting to results
for ⌃NJ⌥ = 5, 10, 15, 20. These approximate statistical
uncertainties are shown in parenthesis and apply to the
last digit. We perform 104 repetitions of the pseudo-
experiment and expect at most O(1%) statistical e⇥ects
from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌃S⌥/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as 
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Q-jet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌃m⌥|cl/⇥⌃m⌥|Q (note classical over Q-jets
here). Values greater than unity mean that the mass
can be measured more precisely with the Q-jet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Q-jets compared to classical pruning. For this quantity
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None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
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⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e⇤ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
While the discussion above certainly suggests that us-

ing Q-jets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
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0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)
None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)
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0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)
0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)
0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)
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0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Q-jet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇤S⌅/⇥B, while
the second shows the average jet mass fluctuation ⇥⇤m⌅. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

and similar numbers would arise for any value above
NQ-jet � 50. The indicated ratios to the classical results
should be independent of ⌃NJ⌥ and we have determined
the values and their uncertainties by fitting to results
for ⌃NJ⌥ = 5, 10, 15, 20. These approximate statistical
uncertainties are shown in parenthesis and apply to the
last digit. We perform 104 repetitions of the pseudo-
experiment and expect at most O(1%) statistical e⇥ects
from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌃S⌥/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as 
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Q-jet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌃m⌥|cl/⇥⌃m⌥|Q (note classical over Q-jets
here). Values greater than unity mean that the mass
can be measured more precisely with the Q-jet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Q-jets compared to classical pruning. For this quantity
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TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
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⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

4

Vol. Rigidity
cut (Vcut) � = 0 � = 0.01 � = 0.1 � = 1 � = 100

�S⇥/�B|Q
�S⇥/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)
0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)
0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)
0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)
None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

��m⇥|cl
��m⇥|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)
0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)
0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)
0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)
None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

�S⇥/�B⇥|Q
�S⇥/�B⇥|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)
0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)
0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)
0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)
None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(�) and subject to a set of volatility cuts (V � Vcut). The
first set of rows exhibit the discovery potential ⇥S⇤/⇥B, while
the second shows the average jet mass fluctuation ⇥⇥m⇤. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e⇥ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential ⌅S⇧/⇥B compared to the re-
sults with classical pruning. Since this quantity scales as⌃
L, the square of the number in the Table can be in-

terpreted as an e⇥ective luminosity improvement due to
employing the Qjet procedure. For example, for � = 0.1
(with no volatility cut) the number 1.18 means an e⇥ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger � values confine the range of trees and yield
results very near the classical pruning results. Smaller
� values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation ⇥⌅m⇧|cl/⇥⌅m⇧|Q (note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as � decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the NQjet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌅m⇧ , (4)

where � ⇥
�

⌅m2⇧ � ⌅m⇧2 and ⌅m⇧ are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Qjets with � = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V ⇤ Vcut, leads to the signal and background
e⇤ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e⇤ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
� = 0.01. Lower: the background versus signal e⇤ciencies
(fraction in the mass bin) obtained for various �’s obtainable
from a cut on volatility and compared to the classical pruning
result.

(and again no volatility cut) the best case occurs for large
� with all trees being essentially the classical tree. Note
that the fact that we get sensible results for � = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
While the discussion above certainly suggests that us-

ing Q-jets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from theNQ-jet di⇥erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/⌃m⌥ , (4)

where � ⇥
�
⌃m2⌥ � ⌃m⌥2 and ⌃m⌥ are the RMS devia-

tion and the mean of the pruned jet mass distribution for
a single jet.
The distribution of volatility for signal and background

Q-jets with � = 0.01 is shown in the upper panel of
Fig. 2. On simple physical grounds one expects that sig-
nal jets, i.e., jets that contain an intrinsic mass scale,
will exhibit a lower volatility than QCD jets with no in-
trinsic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
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Volatility vs. N-Subjettiness vs. Combined
W-tagging: cut on volatility 

Work in progress with 
     David Krohn and Dilani Kahawala 
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Other Weights

• binomial CA-kT: choose CA or 
kT at each clustering

• generalized kT (q-axis, q=1 is kT, q=0 is CA)

• q-axis -> p,q plane (p=q=1 is JADE)

• sudakov/shower inspired weights

}1. doesn’t span space 
of α weight

2. not nearly as 
efficient α weight  
(>> 100 Qjets per jet)

1. “no” free parameters

2. only QCD radiation     
(no separate QCD/signal 
weights for Qjets, unlike 
Template & Shower 
Deconstruction)

}
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Going forward

• work in progress:

• (width and var. of) f1(x) from 1st principles (QCD, SCET, ...)

• resummation of Qjet obs. (e.g. Qthrust) (S. Ellis, AH, M. Schwartz, in progress)

• Qanti-kT events (D. Krohn, D. Kahawala, M. Schwartz, in progress)

• top tagging, new-physics searches/measurements, etc
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A Simple Qjet Observable Example: “Qthrust”

• Simple example (that factorizes): “Qthrust”

• normal thrust (for e+e- → 3 partons) :

• probabilistic thrust :

• example: the α weight...

⌧ =
1

Q
min{s, t, u}

⌧ =
1

Q
(!ss+ !tt+ !ss) with !i ! 1 as i ! 0

!1

!2
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Towards Calculating Volatility (V): Part I

• fixed-order results for e+e- → jets with weighted clusterings:
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Summary

• basis of substructure: trees

• typically, best tree is chosen as CA or kT

• there is no “best” tree and should take many into account

• this improves by:

• 1) reducing statistical uncertainty (less variability)

• 2) giving distributions for each jet → new observables

• hopefully, its clear that we’ve only begun to scratch the surface of 
potential applications....
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