Qjets

U. Washington: Steve Ellis, Tuhin Roy

Harvard: David Krohn, Matt Schwartz

arXiv:1201.1914 (PRL 108 (2012) 182003) & work(s) in progress Andrew Hornig
U. Washington
Particle, Field, and String Theory Group

BOOST 2012 July 26, 2012

Overview of Talk

- (BRIEF!) Review of Standard Approach to Substructure
- Basics of Qjets approach, application to W jets
- 2 main aspects of Qjets:
 - 1: statistical improvement (non-Poissonian)
 - 2: new types of jet variables (example: "Volatility")
- towards theoretical improvements (e.g., resummation of Qjet observables, "Qthrust")

Andrew Hornig (U. Washington)
BOOST 2012 (July 26)

Standard Jet Substructure Technique

- from Jet (particles or constituents) get Tree
- done using algorithm to find the "best" tree (e.g., CA or kT)
- see if tree has structure
- examples:
 - BDRS (mass-drop + filtering)
 - Grooming (pruning & trimming)
 - top-tagging (JHU, HEP, ...)
 - N-jettiness

Standard Jet Substructure Technique

- from Jet (particles or constituents) get Tree
- done using algorithm to find the "best" tree (e.g., CA or kT)
- see if tree has structure
- examples:
 - BDRS (mass-drop + filtering)
- Grooming (pruning & trimming)
- top-tagging (JHU, HEP, ...)
- N-jettiness

Basics of Qjets

 substructure assumes a shower creates trees, and best tree is good enough

- not really one-to-one, invertible
- "structure" can be highly dependent on which tree you take, especially for QCD

Basics of Qjets

- substructure assumes a shower creates trees, and best tree is good enough
- however, even if we knew "best" tree, many other options (showering itself is a random/markovian process), and interference + UE contamination complicates this even more....
- "structure" can be highly dependent on which tree you take, especially for QCD

Basics of Qjets

- substructure assumes a shower creates trees, and best tree is good enough
- Qjets: take all (or many trees)
- example: apply pruning to the various recombinations allowed within a single jet

Andrew Hornig (U. Washington)

- too many trees to consider all
- can sample kT like (or CA like) randomly:
 - at each stage, choose to merge pair w/ prob.

$$\omega_{ij}^{(\alpha)} \equiv \exp\left\{-\alpha \frac{(d_{ij} - d^{\min})}{d^{\min}}\right\} \qquad \text{where} \quad d_{ij} = \left\{\begin{array}{c} d_{\mathbf{k_T}} \equiv \min\{p_{Ti}^2, p_{Tj}^2\} \Delta R_{ij}^2 \\ d_{\mathrm{C/A}} \equiv \Delta R_{ij}^2 \end{array}\right.$$

- this gives a tree, on which any
- results in a distribution for each jet
- (typically) stable after ~100 runs
 (and 100 << 10! to 20!)

Andrew Hornig (U. Washington)

Qjets in Practice: our (ad hoc) metric

- $\alpha =$ "ridigity":
 - α → ∞, exact CA (kT)
 - $\alpha \rightarrow 0$, all combos equal
- $\omega_{ij}^{(\alpha)} \equiv \exp\left\{-\alpha \frac{(d_{ij} d^{\min})}{d^{\min}}\right\}$
- CA and kT are "close" for small enough α:

Andrew Hornig (U. Washington)

Application I: Statistics

- Classical:
- assumptions:
 - 1) production is Poisson: $P_N(n) \equiv \frac{e^{-N}N^n}{n!}$
 - 2) if 1 event has prob. $\epsilon_{\rm cl}$ of being tagged ("tagging efficiency")
 - \Rightarrow tagging (for fixed #n) is binomial: $B_{\epsilon}(n;r) \equiv {}_{n}C_{r}\epsilon^{r}(1-\epsilon)^{n-r}$
 - ⇒ tagging (for any n) is also Poisson:

$$F_{\epsilon,N}(r) \equiv \sum_{n=r}^{\infty} F_{\epsilon,N}(r|n) = \frac{e^{-N\epsilon}N^r\epsilon^r}{r!} \equiv P_{N\epsilon}(r)$$

$$rac{\delta \sigma_{
m cl}}{\sigma_{
m cl}} = rac{1}{\sqrt{N \epsilon_{
m cl}}} \; {
m and} \; \left(rac{\delta \sigma_{cl}^2}{\sigma_c} = 1
ight)$$

$$\frac{\delta \sigma_{cl}^2}{\sigma_c} = 1$$

Andrew Hornig (U. Washington)

Application I: Statistics

Qjets: distributions have an overlap (∈[0,1]), not binomial!

1) production is Poisson

• 2) tagging (for fixed #n) is binomial

• tagging now a distribution $f_1(x)$:

Application I: Statistics

Qjets: distributions have an overlap (∈[0,1]), not binomial!

- 1) production is Poisson
- 2) tagging (for fixed #n) is binomial
- tagging now a distribution f₁(x)

$$\epsilon_Q = \langle x \rangle_{f_1} \qquad \sigma_1^2 = \langle (x - \bar{x})^2 \rangle_{f_1}$$

upshot:

$$rac{\delta \sigma_Q}{\sigma_Q} = \sqrt{rac{1+(\sigma_1/\epsilon_Q)^2}{N}}$$
 vs $rac{\delta \sigma_{
m cl}}{\sigma_{
m cl}} = rac{1}{\sqrt{N\epsilon_{
m cl}}}$

and

$$\frac{\delta \sigma_Q^2}{\sigma_Q} = \frac{\langle x^2 \rangle}{\langle x \rangle} = \epsilon_Q + \frac{\sigma_1^2}{\epsilon_Q}$$

$$\text{VS} \qquad \frac{\delta\sigma_{cl}^2}{\sigma_c} = 1$$

Andrew Hornig (U. Washington)

$f_1(x)$ function for the α -weight

Andrew Hornig (U. Washington)

Application I: Statistics: W-jet Example

• reminder: $\frac{\delta\sigma_Q^2}{\sigma_Q} = \frac{< x^2>}{< x>} = \epsilon_Q + \frac{\sigma_1^2}{\epsilon_Q}$

Andrew Hornig (U. Washington)

Application I: Statistics: W-jet Example

- Signal = boosted W-jets, pT > 500
- BG = light QCD jets, pT > 500
- Measure the signal size in a bin (here 70-90 GeV) and compare it to the size of the BG fluctuations (Poisson stats included)

Algorithm	Mass uncertainty $\delta\langle m angle$	Relative Luminosity required
k _⊤ ("classical" pruning)	3.15 GeV	1.00
Qjets α=0	2.20 GeV	0.50
Qjets α =0.001	2.04 GeV	0.45

⇒ ~ *factor of 2 in luminosity* needed for given significance

Application II: New Observables

- since Qjets gives distributions for each jet, can now cut on these distributions (or more complicated analysis)
- example: "Volatility," a measure of how ambiguous/"fuzzy" jets are

$$\mathcal{V} = \Gamma/\langle m \rangle$$
 $\Gamma \equiv \sqrt{\langle m^2 \rangle - \langle m \rangle^2}$

- QCD jets often have ambiguities, making V larger
- ambiguity larger for smaller m/p_T (m ~ p_T QCD jets have "real" structure)
- Note: Poisson stats for \mathcal{V} -cut jets (when $m_{window} >> m_{cut}$)

Application II: New Observables

• Volatility for example of pruned jets $V = \Gamma/\langle m \rangle$ $\Gamma \equiv \sqrt{\langle m^2 \rangle - \langle m \rangle^2}$

$$\mathcal{V} = \Gamma/\langle m \rangle$$
 $\Gamma \equiv \sqrt{\langle m^2 \rangle - \langle m \rangle^2}$

Volatility vs. N-Subjettiness vs. Combined

Andrew Hornig (U. Washington)

Other Weights

- binomial CA-kT: choose CA or kT at each clustering
- generalized kT (q-axis, q=1 is kT, q=0 is CA)
- q-axis -> p,q plane (p=q=1 is JADE)

sudakov/shower inspired weights

- 1. doesn't span space of a weight
- 2. not nearly as efficient α weight (>> 100 Qjets per jet)
- 1. "no" free parameters
- only QCD radiation
 (no separate QCD/signal weights for Qjets, unlike Template & Shower Deconstruction)

Andrew Hornig (U. Washington)

Going forward

work in progress:

• (width and var. of) f₁(x) from 1st principles (QCD, SCET, ...)

• resummation of Qjet obs. (e.g. Qthrust) (S. Ellis, AH, M. Schwartz, in progress)

• Qanti-kT events (D. Krohn, D. Kahawala, M. Schwartz, in progress)

• top tagging, new-physics searches/measurements, etc

Andrew Hornig (U. Washington)

A Simple Qjet Observable Example: "Qthrust"

- Simple example (that factorizes): "Qthrust"
- normal thrust (for e⁺e⁻ → 3 partons) :

$$\tau = \frac{1}{Q}\min\{s, t, u\}$$

probabilistic thrust :

$$\tau = \frac{1}{Q}(\omega_s s + \omega_t t + \omega_s s) \qquad \text{with} \qquad$$

example: the α weight...

Towards Calculating Volatility (V): Part I

fixed-order results for e⁺e⁻ → jets with weighted clusterings:

Andrew Hornig (U. Washington)

Summary

- basis of substructure: trees
- typically, best tree is chosen as CA or kT
- there is no "best" tree and should take many into account
- this improves by:
 - 1) reducing statistical uncertainty (less variability)
 - 2) giving distributions for each jet → new observables
- hopefully, its clear that we've only begun to scratch the surface of potential applications....

Andrew Hornig (U. Washington)