Xavier Gremaud, EPFL, 17.05.2011

TELL10 Velo data processing note

Contents

R 10N o o 18 ot o o F PSP PRSP 2

2 Data flow and resources UtiliZation..........coceeiiiieiiieiiie e 3

3 Velo specific parts of the data ProCesSiNg......ccuuuiiei i 5
3.1 Super Pixel Packet (SPP) reCONSTIUCTIONeeeiuieeciiiecciiecciieecieecieeetee e ste e s eeteeevreeereesbne e 5
3.2 B g LI =TeT o L= T Y= PSP 6
3.3 [T o T ol) ad =TSP 7
34 ClUSTEIIZATION ..ee ettt e sr e s e s ne e e s e sanee s 8

4 Data processing part for all the deteCtor 10
4.1 (R T o o [o 11 V- PSPPSR 10
4.2 Multi Word Packet (MWP) @SSEMDIYcccviiiiiiiciiieciee ettt et e et e e saae e sreesbae e 12
4.3 (Y RO W T-7= LT o {0) USSR 13
4.4 Multi Event Packet (MEP) @SSEMDIYccociiiiiiiiee ettt 13

ST 0] o Tol [V oo - F OO PO U PO PPTOPPTOPRRPRROPPRRPRTPN 14

Xavier Gremaud, EPFL, 17.05.2011

1 Introduction

This document will explain the different functions of the data processing in the FPGA of the Tell10
card, separating the Velo specific blocks and the blocks used for all the detectors. The name Tell10
references to the intermediate step data acquisition board (the next step is Tell40) designed at LPHE
EPFL. It has not the identical properties as the TELL40 designed by the Marseille group but it is based
on the same type of FPGAs. The studies and conclusions done for the data processing regarding the
VELO are certainly valid to a large extend for both TELL10 and TELL40.

The TELL10 card has 24 GBT serial links providing each data steams 80b wide @ 40MHz. The data
rate of 1 GBT link is 80b/25ns = 3.2Gb/s, so for 24 links, the maximum input data rate is 77Gb/s.

The data is assembled from the different links, stored in two 4GB DDR3 SDRAM memory and then
send out to the CPU with 4x 10Gigabyte Ethernet links in the MEP format.

Note that in contrast to the TELL1, no data reduction due to zero suppression is expected to be
obtained at the FPGA. Data reduction is done in the FE electronics.

The LHCb bunch crossing rate of 40MHz and the TELL10 data processing frequency of 200MHz
imposes a maximum of 5 clock cycles per event in all processing stages. A large amount of pipeline
processing is required.

Xavier Gremaud, EPFL, 17.05.2011

2 Data flow and resources utilization

1 link Resource utilization:
GBT[0] [ALUT]

In: 24x3.2Gb/s = 12x38.4Gb/s = 77Gb/s E
Superpixel packet from 38 to 150b ;'%
GBT: 120b => 4.8Gb/s
Header: 4b =
SlowControl: 4b 8
Data: 80b

Small input buffer
ForErrCorr: 32b

SPP splitter:

) . Data from 1 output FIFO in LSB,
Split the GBT frame in two data from another one in MSB 260 (X24)

2z == .
S8 28 SPP reconstruction:
2x 1910 (x24)
SPP reconstruction SPP reconstruction nSPP reconstruction:
o o 2x1380 (X24)
== ==
25 25
] FIFO |] FIFO 60+ 2 640 sz +
1b for 80b size
o5 oz
28 28 .
Linker O:
Read flom 2 FIFOs Linker0 260 (x24)
= . .
i g | B Time reordering:
Bent + event length stored in a Time reordering | S &
separeted RAM 3] o 1100 (X24)
- Maximal number of events in this buffer
EnDied $1225T4 EDRodST2 251! defines the maximal atency of the arrival
ot between event ragments ot of order Data s byte aligned, already structured
20bit X
RAl RAM End of SPP. for DAQ data
10Kt 266Kbit
EviDmod 512=1 EviD mod 512=1 Unused for this event
EviDmod 512=0 EviD mod 51220 Fix the max size of one
event fragment in order to
£ EXEE fyed e fie2 B! restrict the buffer size!
] EoSPP 1 Byted Byte 1 Byte2 Padding
This buffer serves to re-order event 9 EoSPP.1 Byted Byte 1 Paddng
fragments (event data received out of 3 Padding inserted needs fo be removed
order for the Velo), 512 events max. later
reorder time imposed, :
And derandomizer at the read side, 512 Clusterization ? Or unpack SPP? Or kepp SPP format? Un pac k SPP:
deep! Data valid calculation + Add link source ID + ToT correction ~2000 (X24)
Unpack nSPP:
650 (x24)
Create dv :
65 (x24)

Xavier Gremaud, EPFL, 17.05.2011

Merge the 2x12 links into 2 separate MWP

stream before the DDR3 SODIMM SDRAM
Data from GBT[0]..GBT[2]
3 E E Data width dv
H g H _ 64b 3b
= 2 - Padding 1
2 & g 128b 4b
Read fragments from 3 FIFOs and Read from 3 FIFOs. Padding 2
assemble these to one. Start as soon as 8tits padding Linker{ 256b 5b
all event fragments are ready! Wite to 1 FIFO Padding 3
B3 w00 ' 256b 5b
g Padding MEP
Bent and length stored in 256b 5b
s another FIFO
Kot Datais byte aligned, already structured
for DAQ data
Data valdnornaton 5,5 Byied ‘ Byet ‘ Byie2 ‘ Paddng Padding inserted only at the end of
VB) ‘ Bt | B2 | [ot event!
2
i g
® ®
E g
Read fragments from 2 FIFOs and Read from 2 FIFOs Linker2
assemble these to one. Start as soon as 16 bits padding
all event fragments are ready! ‘ Wite mp1a ;":(g) Data rom GBT[0]. GBT[S]
@
51.2Gbits | §
?fgf;" Bent and length stored in
. . 17Kbit another FIFO
Data vl nformation Vs Byteo ‘ Bt ‘ Bez ‘ Paddng Padding inserted on:y atthe end of
oo | Beo | et | ew2 | X event
F]
]
g z
@ S
& =
& £
Read fragments from 2 FIFOs and Li
Read fom 2FIFOs inker3
assemble these to one. Start as soon as y . Data from GBT[12]..GBT[23]
et Fgnerts oy ‘ 2 bits padding Data from GBT[0]. GBT[11] ‘GBT[12]. GBT[23]
o 2 separate MEP stream g
512 Gbits § § ﬁ S
32binfo=> \§7
1b: end of event i
Multi Word Packet generator No datafor th t
1b: event emply 2 " 0 data for the event empty,
b data v Create one word with 8x32b info only 32binfo
1b: event RAM OVF |
7b: unused
16b: checksum (1b/16b)
100% GBT link load = 3.2Gbitls SDRAM size storage if)r 860ms @ 20Gbit's
Average event size with 100% finkload = 3.2Gbit's 30 MHz = 107 bit Acts as network nterface buffer.
Average fragment size in SDRAM = 1280 bit = 5 words
DDR3 SDRAM Ctl Read access
Unpack the MWP'
32b EvID creation and control the checksum
%
=
g
Event ID (32b) +)
decision (1) L0 trigger ‘
Can store up to 100us
of decision, 330x4098
‘SDRAM needs to be accessed for read and write 100% fink
load on 12 GBT (38.4Gbitls) = 75% SDRAM bandwidth
Output to network only 20Gbits
Network protocol
MEP header: processor,
VEP generalor j
ﬁﬁgm oftheMEP, 16 Bytessize calulaton, 320 pacding L0P R Etemet
bytes length, 24b N v
MEP facor, 8 OiD oy
i a8
& ~

200MHz

i

G
20z

i

@ 100% GBT link load,
event size average is = 1280 bit + protocol header (VEP, IP..)

Ethemet and IP framer, checksum generation

bytes aligned

1

2

HHE
20z

|

E

165 Gbits

SYGIXY

w
266 Ghils §
Interface to Quad MAC chip
Out: 2x10Gb/s

§| 250Hs

Ethemet and IP framer, checksum generation

Interaken IF
4x65Gbts
959Ky
3l vasena

Out: 2x10Gb/s

Resource utilization:
[ALUT]

Linker 1:
400 (x8)
Padder 1:
1280 (x8)

Linker 2:
540 (x4)
Padder 2:
2420 (x4)

Linker 3:
960 (x2)
Padder 3:
2800 (x2)
MWP gen:
1450 (x2)

SDRAM driver:
1640 (x2)

Unpack MWP:
640 (x2)

LOT:
640 (x2)

MEP gen:
4490 (x2)

Xavier Gremaud, EPFL, 17.05.2011

Logic (ALUT) Total memory bits | M144k blocks
Data processing 200’000 7'500°000 48

(48%) (37%) (75%)
FPGA 424’960 21'233'664 64

Figure 2-1 : FPGA resource utilization with unpacking the nSPP format and not much
monitoring

3 Velo specific parts of the data processing

3.1 Super Pixel Packet (SPP) reconstruction
In the FE, the 80b wide GBT word is filled by two distinct data streams each 40b wide, one for the
lower and one for the higher part of the 80-bit words.

Super pixel packet (SPP) format : 38-150b
Header, 30b

Address, 12b

bunch count, 12b | row header, 4b | sh row header, 2b payload, 8-120b

Define the

sh ToTs, 0-32b size of

hitmap, 4-16b sh hitmap, 0-8b | ToTs, 4-64b

Figure 3-1 : SPP format

With this format, half of the logic of the data processing is used to reconstruct the data into SPPs.
The main cause of the huge resource usage is the fact that the data is aligned to 8 bits (the length of
one SPP varies from 38 to 150b) and the data of two consecutive SPP are alighed on 8b. The
consequence is that a huge multiplexer of (184x150/8=3k5)x48 is required! (Twice for each link) For
the longest SPP of 150b, a shift register of the length of 152-8+40=184b is required.

With that format, it needs at least 54b to know the length of the SPP. It depends of four different
fields: row header, shared row header, hitmap and shared hitmap. Moreover the length of hitmap
and shared hitmap can vary. So it takes a lot of tests to find the hitmap and the shared hitmap, and
then it need to count the number of hit in the two fields to calculate the length of the SPP. The
number of bits that need to be checked is too large in order to use a LUT. When the length of the

Xavier Gremaud, EPFL, 17.05.2011

SPP is known, it needs to check if there are enough bytes already read, otherwise it need to wait for
more data.

With the new SPP format “nSPP” only the “hit count” field is needed to know the length of the SPP. It
can be more easily reconstructed, but it will still need quite large multiplexers (192x150/8 x48).

pixe! packet (nSPP) format : 36-156b
Header, 28b

bunch counter, 12b SP address, 12b Hit count, 4b | payload, 8-128b

hit0O addr, 4b | hit1 addr, 4b ToTO, 4b ToT1, 4b

Length = 28 + n*8 [bits]

Figure 3-2 : nSPP format

Logic (ALUT) Logic (ALUT)
SPP reconstruction 92700 Unpack SPP ~48000
(22%) (11%)
nSPP reconstruction 66200 Unpack nSPP 15600
(15%) (4%)

Figure 3-3 : SPP and nSPP format resource utilization

3.2 Time reordering
The SPP are sent by the Velopix in disorder concerning the time. They need to be time reordered in
the FPGA.

The time reordering is done using RAM blocks. In the current FPGA EP4SGX530 (largest Altera Stratix
IV device), a total of 64x144kB memory blocks are available. The RAM space is divided in 512 equally
sized memory blocks, the space reserved for data arriving in random order. The RAM location is
defined with LSBs of the BCnt. The total memory space required is the maximum time delay allowed
multiplied by the maximum event size allowed, space for every event has to be reserved, even for
empty events(512 events x 8 words x 65b = 266kB, max. 288kB/links). Each GBT link is restricted to 8
SPP smaller than 64b. Choosing a time reorder buffer of 512 events deep and 8 words event size
occupies 48 memory blocks (maximum size reached!). There are no other large memories required
for the other processing steps. With a margin of 16 events for the time reordering, the time reorder
is possible for up to 512-16=498 events.

Xavier Gremaud, EPFL, 17.05.2011

The time reordering need a second RAM to store the length and the BCnt for each event. There are
too many events to store the information in registers. However it takes 3 clocks to read from a RAM.
This limitation applies to write the data in the RAM (need to know the length of the current event
before writing) but also to read the data out of the RAM (to read the correct number of word from
the RAM for the event).

£
=
. . g
Bent + event length stored ina Time reordering | &
B
separeted RAM E3) -
Maximal number of events in this buffer
R EiDod 5251l defines the maximal latency of the arrival
befween event fragments out of order Data is byte aligned, already structured
201t 65bit
o o End of SPP for DAQ data
10Kbit 266Kbit
EviDmod 512 =1 EviD mod 512= 1 Unused for this event
EvD mod 51220 EviD mod 512=0 Fix the max size of one
event fragment in order to
EoSPP1 Byte0 Byte 1 Byte2 , 7) .
2 d . . - BE restrict the buffer size!
g EoSPP,1 Byte 0 Byte 1 Byte 2 Padding
This buffer serves to re-order event = EoSPP,1 Byte 0 Byte 1 Padding
3

fragments (event data received out of
order for the Velo), 512 events max.
reorder time imposed,
And derandomizer at the read side, 512

Padding inserted needs to be removed
later

deep!
Figure 3-4 : Time reordering block diagram
Write:
4 clk for SPP<64b 5 clk for 64b<SPP<128b 6 clk for 128b<SPP
Read:

1 clk + 1 clk/word, but at least 4clk/event

Figure 3-5 : Timing time reordering

3.3 Unpack SPP

To unpack the SPP format is difficult because the length and the position of the different fields are
variable for each SPP, and in addition not easy to find. It depends on the length of all the previous
fields, like said for the SPP reconstruction. An additional “link source id” (5bits) is required to identify
the data from 24 different GBT links which has to be added to the date like an address extension.

To unpack the SPP, the length of the “hitmap” using the “row header”, the position of the “shared
hitmap” using the “row header” and its length using the “shared row header”, the position and the
length of the “ToTs” (Time over Threshold)/”shared ToTs” using the “hitmap” and the “shared
hitmap” and finally the number of hit to unpack need to be considered.

Xavier Gremaud, EPFL, 17.05.2011

As said before, with the nSPP format, it just needs to check the “hit count” field to know everything
about the SPP: the length of the « hit address » fields, the position of the ToT and the number of hit
to unpack. This new format really simplifies the SPP unpacking.

Data format for 1 hit : 28b

padding, 3b | link source id, 5b | hit address, 16b ToT, 4b

Figure 3-6 : Data format for 1 hit

3.4 Clusterization
Only 25ns for each pipeline step.

Cluster format : 29-85b

link source id, 5b | seeding hit address, 16b nbr hit, 4b neighbouring hit addr, 0-24b ToTs, 4-36b

15 14 13 12

11 9 8
' 12b address

4b row header
4b hitmap

7 seed 3

Figure 3-7 : Cluster format

The clusterization requires splitting up the SPP format because two isolated pixels can be in the same
SPP. The most obvious approach for clusterization is to use one seeding pixel and search for possible
neighbours. But it is very difficult to perform “perfect” clusters because average time per cluster is
limited to 25ns if done in a pipeline, otherwise 25ns for the complete event! The 16b seeding hit
address is reconstructed from the 12b address, the 4b row header and the 4b hitmap. The cluster
form depends of the seeding hit, which is the first hit. One “normal cluster” can be split in two
clusters.

Xavier Gremaud, EPFL, 17.05.2011

* x *x
\

WA
A 2
! |

i
Figure 3-8 : Example of not perfect cluster

4

The cluster size is restricted to multiple of bytes! (Data processing on the FPGA but also on the CPU
becomes very difficult otherwise). The expected data reduction from clustering taking for 50% 1-hit
and 50% 2-hit clusters is order of 14%. The principal goal of the clusterization is data reduction,
“perfect” clustering like for TELL1 is not possible anymore. Additional processing in a CPU is required
to finish: Forming clusters over boundaries of GBT links, combining separated clusters and forming
clusters for events with too high pixel count.

To pipeline the cluster search, only one cluster per pipeline step is formed. One pipeline step takes
25ns. In average the hottest region has 2 to 4 pixels “only” per event and per GBT (10 to 20 pixels per
chip)! Choosing a number of 6 stages should do enough clusters for most of the event. The total
number of clusters that can be formed is limited by the number of pipeline stages.

The cluster search is performed by searching neighbors from the first hit in the data. Each
consecutive pipeline stage has the same function. The functioning of the one stage is: the block
“cluster search” take the one hit in the “FIFO hits not tested” of the previous stage and compare it
with the other hits of the “FIFO hits not tested” of the previous stage, if the hits are not a cluster,
they are written in the “FIFO hits not tested”. Once all the hits of the current event have been tested,
the cluster is written in the “FIFO clusters”. Then the clusters already formed for the current event
are moved from the “FIFO clusters” of the previous stage to the “FIFO clusters of the next stage.

At the moment, the clusterization has been given up because it would need too many resources for
24 links, for only a few data reduction.

Xavier Gremaud, EPFL, 17.05.2011

1st stage

2nd stage

Last stage

FIFO FIFO
Hits not Hits not [CRCNC)
j> tested $ tested i> |::>
Conver 548 ' Cluster Cluster 5 cluster search? | Cluster
B S search search search
FIFO FIFO
£> Clusters i> i> Clusters j>o o |:\‘>
Figure 3-9 : Clusterization block diagram
With clusterization Without Data reduction
1 hit 29b =>32b 25b =>32b 0%
2 hits 36b =>40b 50b => 56b 28.5%
3 hits 43b =>48b 75b =>80b 40.0%
4 hits 50b => 56b 100b => 104b 46.1%
5 hits 57b => 64b 125b =>128b 50.0%
6 hits 68b =>72b 150b => 156b 53.8%

4 Data processing part for all the detector

Figure 3-10 : Cluster format data reduction

4.1 Linker + Padding

The principle of the TELL10 data processing is to assemble the data from the links, 2 or 3 links each
time, to avoid that the number of clock spent for each event is more than 5. There are three linking
stages in TELL10 as we can see it in the data flow. The first stage assembles 3 links because the
probability to have no data on one link is higher than for the 2 next stages. Each time the data from
different links are assembled together, the bus width needs to be increased to increase the data rate.

At the beginning, there was a fourth stage with a 512b wide but it required really large multiplexers
(a 512b bus requires for byte padding a multiplexer of 512x512/8=32K connections) that introduce
timing problem. So we decided to split up the data processing design in two to run two independent
256b MEP stream with a external DDR3 SDRAM bus with the same width, removing the stage4
(linkerd + padder4, 512b width). It gives us more flexibility, allowing to place and route the design

more freely in the FPGA, especially with the I/O, to obtain better timings.

10

Xavier Gremaud, EPFL, 17.05.2011

The principle of padding is to place the next data right after the last byte of the previous data,
watching the data valid, to group the data of the same event, reducing the data loss. Padding is done
only for data from the same event, except in the MEP assembly,

It is possible to change the byte alignment of the padder, it allow reducing the number of
interconnections for multiplexer, reducing the number of logic needed and improving the timings.

Padding stage Bytes aligned Data in width Data out width
1 1 64b 128b
2 2 128b 256b
3 4 256b 256b
MEP 4 256b 256b
Figure 4-1 : Byte padding alignment for the different stages
J L
12 links 12 links
data data
processing processing
51.2 Ghitls < - 51.2Gbils <
MEP MEP
DDR3 DDR3
SDRAM —_— SDRAM
ZSE’b Ethernet Ethernet 253?
/ framer framer 7
i/ N
20 Ghit/s 20 Gbit/s

Figure 4-2 : TELL10 split in two independent MEP stream

Xavier Gremaud, EPFL, 17.05.2011

First data: 0OxO0F4 datavalid: 1
Second data: 0xOE32 datavalid: 2

Bytealignement: B7 B B5 B4 B3 B2 B1 Bo |datavalid:

32b F4 | 00 | 00 | 00 | E3 | 20 | 00 | 00 | 4+4 =8
16b F4 | 00 | E3 | 20 | 00 | 00 | 00 | 00 | 2+2=4
8b F4 | E3 | 20 | 00 | 00 | 00 | 00 | 00 | 1+2=3

Figure 4-3 : Padding example

4.2 Multi Word Packet (MWP) assembly

The 4GB DDR3 SDRAM 256b wide is used to de-randomize the data rate. It can store up to 625ms
without reading. The total bandwidth is 51.2 Gb/s for input and output. The average data rate will be
balanced between read and write. The utilization of an external memory is needed because the
internal memory of the FPGA is small and the network needs considerable buffering if for example a
pull protocol is implemented.

The memories that are implemented on the board (SO-DIMM) do not have parity bits implemented
so some bits must be reserved to ensure correct data transmission. In addition data valid bits in
order to flag the valid section of each word need to be added. So, 8b data valid and the 16b
checksum are added.

For an effective use of the data bandwidth of the memory, event based read write operations can
not be allowed. Block transfer of data of previously assembled data in transmission buffers have to
be used. We introduced the MWP format for this reason. For each data word, the data valid, some
flags and the checksum are written in a 32b info packet. Once seven words have been read, the
seven info words form the header with the 16b checksum for the header. So at the output of this
block, there will be one header word every seven data words. This introduced a data loss of 12.5%
but allows to have a efficient usage of the bandwidth and data consistency checking implemented.

The BCnt is not anymore given with the event. There is only one bit “End of event” that is set to ‘1’
for each last word of the event. This bit will be used to reconstruct a new event ID after the DDR3
SDRAM. Another important flag is the “Event empty” to tell that an event have no data word.

Another possibility for the MWP would be to reduce the data from 256b to 224b and to use the 32b
for the data valid, the flags and the checksum. But this solution introduced two padder instead of
one.

Explain this

12

Xavier Gremaud, EPFL, 17.05.2011

At the moment, the checksum is calculated for 16b. It’'s possible to calculate it for 32b to use one
header word for fifteen data word instead of seven which allows to make the loss of bandwidth
smaller and the block transfer size bigger.

Multi Word Packet (MWP) format : 256b

datavalid, 8b | flags, 8b | checksum, 16b

header Info wd6, | Info wd5, | Info wd4, | Info wd3, | Info wd2, | Info wd1, | Info wdO,
checksum, 16b 32b 32b 32b 32b 32b 32b 32b
Data0, 256b
Data6, 256b

Figure 4-4 : MWP format

4.3 Level 0 Trigger (LOT)

The level O trigger tells for each event if the data for the current event should be kept or deleted. The
decision is read from a 33bx4096, which can store up to 100us of event. A decision is constituted of a
32b event id and 1b for the decision. The event linked is not linked to the BCnt. It’s reconstructed
from the bit “end of event”. The LOT is placed after the DDR3 SDRAM to allow a large time for the
trigger decision to arrive.

~
==
=
2
=3
£
[S]
S
2
el
g

Event ID (32b) + 33bi] .
decision (1b) O ot o L0 trigger
Can store up to 100us 512Chits (£ £

of decision, 33bx4096

Figure 4-5 : LevelO trigger block diagram

4.4 Multi Event Packet (MEP) assembly

The MEP assembly in TELL10 keep the same principle as in TELL1, one header word followed by a
number of event defined by the MEP factor. The goal of the MEP is the data reduction, not adding a
word of header for each event. The data from several events are kept in a buffer, in order to lower

13

the packet rate on the network. After the MEP, there are no more data valid required since the

Xavier Gremaud, EPFL, 17.05.2011

length is encoded in the data.

The header word is composed of the event ID of the first event in the MEP, the length of the MEP in
bytes and the length of the MEP in event (MEP factor). Then comes the data, for each event, it starts
with the length of the event in bytes following by the data (hit, SPP or cluster). For the event empty,

the length will be zero and there will be no data for the event.

w0

w1

w2

w3

wX

Output data format : 256b

EviD, 32b

MEP length, 24b

MEP factor, 8b

EvO0 length, 16b

Cluster0 EvO

Cluster1 EvO

Ev1 length, 16b

Cluster0 Ev1

Cluster1 Ev1

Cluster2 Ev1

Ev2 length, 16b

Cluster0 Ev2 ->

<- Cluster0 Ev2

Ev3 length, 16b

Ev4 length, 16b

Cluster0 Ev4

Cluster0 EvX

Padding

5 Conclusions

Figure 4-6 : Output data format

14

	1 Introduction
	2 Data flow and resources utilization
	3 Velo specific parts of the data processing
	3.1 Super Pixel Packet (SPP) reconstruction
	3.2 Time reordering
	3.3 Unpack SPP
	3.4 Clusterization

	4 Data processing part for all the detector
	4.1 Linker + Padding
	4.2 Multi Word Packet (MWP) assembly
	4.3 Level 0 Trigger (L0T)
	4.4 Multi Event Packet (MEP) assembly

	5 Conclusions

