
Geant4 and
GPU/vectorization

Philippe Canal (FNAL)
Soon Jun (FNAL)

Studying Code Efficiency
  Studying cmsExp

  Not evaluating the intrinsic quality of the algorithms;
focusing instead on whether memory access (and lack of
vectorization) are a bottle neck.

  Tools used: cachegrind, CodeAnalyst, igProf

  Observations
  Cache misses spread pretty much throughout code.
  A few hotter spots

  G4PropagatorInField::ComputedStep
8% of instructions but 17% of cache miss and 36% of real
time (portion of G4RunManager::DoEventLoop, inclusive of
all sub calls)
  In contrast its caller

G4Transportation::AlongStepGetPhysicalInteractionLength
uses 19% / 23% / 43%

February 2012 2 Philippe Canal

Transportation and GPU
  Goals:

  Learn more about GPU programming and estimate how
much it could help speeding up simulation.

  Focus:
  Transportation (and magnetic field effect)

  Extracting realistic sample of trajectories:
  Regular run recording every primary and secondary and

their steps length.
  Use this as input of simulation with a physics list composed

of only transportation (and magnetic field) + a mechanism
to kill the particles after they were propagated as long as in
the original case.

  Currently working out the last kinks.

February 2012 3 Philippe Canal

Next Steps
  Start prototyping on GPU.

  With or without (existing) CPU framework?

  Decide whether to use any of:
  Existing Geant4 code by extracting and ‘vectorize’ some

portions.
  Otto Seiskari’s Prototype of G4 navigation on GPU.
  SFT’s Geant prototype
  Existing GPU implementation(s) of similar tasks.

  Any ideas, pointers?

  Will use the trajectories samples from cmsExp (and
possibly SimplifiedCalo) to test and contrast the
resulting code.

February 2012 4 Philippe Canal

