Searching for new physics with the LHCb Experiment

Mitesh Patel (Imperial College London)
NExT Meeting, 14th Mar 2012

Introduction

 The LHCb experiment is designed to look for new physics in heavy flavour decays

 During 2011 the experiment collected 1.1fb⁻¹ of integrated luminosity (~1/5th of integrated luminosity of ATLAS,CMS)

The decays $B_d \rightarrow \mu^+ \mu^-$ and $B_s \rightarrow \mu^+ \mu^-$

• The branching ratios of the decays $B_d \rightarrow \mu^+ \mu^-$ and $B_s \rightarrow \mu^+ \mu^-$ allow the parameters of any extended Higgs sector to be probed

- The decays are doubly suppressed in the SM
 - FCNC
 - Helicity suppression

However, rates well calculable – in the SM,

$$B(B_s \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$$
 $B(B_d \to \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10}$ [Buras et al., arXiv:1007.5291]

Sensitive to NP contributions in the scalar/pseudo-scalar sector:

(
$$c_{S,P}^{MSSM}$$
) 2 \propto $\left(\frac{m_b m_\mu \tan^3 \beta}{M_A^2}\right)$ 2 MSSM, large tanβ approximation

Experimental Status

- Existing LHCb limits (0.37fb⁻¹):
 - $-B(B_s \rightarrow \mu\mu) < 1.4 \times 10^{-8} 95\% \text{ C.L}$
 - $B(B_d \rightarrow \mu\mu) < 3.2 \times 10^{-8} 95\% \text{ C.L}$

[arXiv:1112.1600, Phys. Lett. B 708 (2012), 55-67]

- CDF has an excess of events (10fb⁻¹):
 - $-B(B_s \rightarrow \mu\mu) = (1.0^{+0.8}_{-0.6}) \times 10^{-8}$
- CMS now have a limit from 5fb⁻¹
 - $-B(B_s \rightarrow \mu\mu) < 7.7 \times 10^{-9} 95\% \text{ C.L}$
- ATLAS limit from 2.4fb⁻¹
 - $-B(B_s \rightarrow \mu\mu) < 22.0 \times 10^{-9} 95\% \text{ C.L}$
- LHCb results now updated to 1fb⁻¹ (presented at Moriond EW)

Analysis Strategy

- Backgrounds controlled with a Boosted Decision Tree (BDT)
 - Combinatorial background (bb→μμX)
 - B→hh events with h→μ mis-id
 - μμ from elastic di-photon production
 - Exclusive decays (B_s →μμγ, B^+ →π⁺μμ, B_c^+ →J/ψμν...)
- Use a range of channels for normaln (B⁺→J/ψ(μμ)K⁺, B⁺→J/ψ(μμ)φ(KK), B→Kπ)
- BDT, mass plane divided into bins, estimate amount of background and signal (assuming a BR) in each, use CLs method

Results

- Events observed consistent with expected background level and SM signal expectation
- Simultaneous unbinned LL fit to the mass in the 8 BDT bins used to set limits:
- LHCb estimate of BR : $B(B_s \rightarrow \mu \mu) = (0.8^{+1.8}_{-1.3}) \times 10^{-9}$

mode	limit	at 90 % C.L.	at 95 % C.L.
$B_s^0 \to \mu^+ \mu^-$	expected bg+SM	6.3×10^{-9}	7.2×10^{-9}
	expected bg only	2.8×10^{-8}	3.4×10^{-9}
	observed	3.8×10^{-8}	4.5×10^{-9}
$B^0 \to \mu^+ \mu^-$	expected	9.1×10^{-10}	11.3×10^{-10}
	observed	8.1×10^{-8}	10.3×10^{-10}

Worlds best limits on $B\rightarrow \mu\mu$

Impact

Nazila Mahmoudi, Moriond QCD yesterday:

Impact

Nazila Mahmoudi, Moriond QCD yesterday:

And in the future ...?

$$D^0 \rightarrow \mu^+ \mu^-$$

 LHCb collaboration showed the worlds best limit on D⁰→μ⁺μ⁻ decay from 0.9fb⁻¹ at Moriond EW:

− B(D⁰→
$$\mu^+\mu^-$$
) < 1.3×10⁻⁸ at 95% C.L.

- An order of magnitude improvement from previous experiments [arXiv:1003.2345] and consistent with the SM prediction (~10⁻¹⁰ from LD processes) [arXiv:hep-ph/9512380]
- Can improve with more data

ϕ_s – Introduction

 Interference between decay or mixing and then decay results in CP violating phase:

$$- \phi_S = \phi_M - 2\phi_D$$

- B_s→J/ψφ decay dominated by b→cc̄s transition
 - small penguin contribution, δP
- SM prediction:

$$-\phi_S = -2\beta_s + \delta P \sim -2\beta_s = 0.04$$

New physics can add large phases

- New 1fb⁻¹ results shown at Moriond EW
 - Measurement in J/ψππ decay
 - Measurement in J/ψφ decay not a CP eigenstate → required angular analysis to statistically separate CP-even/odd

Principle of the measurement

• Differential decay rate for $B_s \rightarrow J/\psi \pi \pi$

$$\Gamma\left(B_s^0 \to J/\psi f_0\right) = \mathcal{N}_f e^{-\Gamma_s t} \left\{ e^{\Delta \Gamma_s t/2} (1 + \cos \phi_s) + e^{-\Delta \Gamma_s t/2} (1 - \cos \phi_s) - \sin(\phi_s) \sin(\Delta m_s t) \right\},$$

$$\Gamma\left(\overline{B}_s^0 \to J/\psi f_0\right) = \mathcal{N}_f e^{-\Gamma_s t} \left\{ e^{\Delta \Gamma_s t/2} (1 + \cos \phi_s) + e^{-\Delta \Gamma_s t/2} (1 - \cos \phi_s) + \sin(\phi_s) \sin(\Delta m_s t) \right\}.$$

- Signal is sinusoidal time distribution
 - Amplitude proportional to $sin(\phi_s)$
 - Opposite sign for B and $\bar{B} \rightarrow$ must flavour tag
 - Diluted by wrong tagging probability w_{tag}
 - Diluted by detector resolution σ_t
- Fundamentally we measure :

B_s \rightarrow J/ψππ

- Boosted Decision Tree seln
- Maxm likelihood fit to time and mass – approx. 7.4k signal evts
- ϕ_s =-0.02±0.17(stat.)±0.02(syst.)rad [LHCb-PAPER-2012-006]

$$B_s \rightarrow J/\psi \phi$$

 Decay to CP-odd and CP-even final states → need analysis of decay angle distribution but fundamentally still measure

$$sin(\phi_s) \times D(\sigma_t) \times (1 - 2\omega_{tag}) \times sin(\Delta m_s t)$$

- There is a two fold ambiguity in the solutions: $\phi_s \to \pi \phi_s$, $\Delta\Gamma_S \to -\Delta\Gamma_S$ + strong phase changes
- Much larger branching fraction, $B(B_s \rightarrow J/\psi \phi)/B(B_s \rightarrow J/\psi \pi \pi) \sim 5$

B_s→J/ψφ: Preliminary Results 1.0 fb⁻¹

 Using a simultaneous fit to both datasets, taking all common parameters and correlations into account, combined result

```
\phi_s = -0.002 \pm 0.083(stat.) \pm 0.027(syst.) rad Worlds best
```

$B_s \rightarrow J/\psi \phi$: Preliminary Results 1.0 fb⁻¹

Can resolve the ambiguity: LHCb-PAPER-2012-28, submitted PRL, arXiv:1202.4717v2

$B_d \rightarrow K^* \mu \mu - Introduction$

- Flavour changing neutral current → loop
- Sensitive to interference between

and their primed counterparts

- Exclusive decay → theory uncertainty from form factors
- Multitude of observables in which uncert. cancel to some extent e.g. A_{FB}, A_T⁽ⁱ⁾
 - zero-crossing point of A_{FB}

Experimental Status

Babar, Belle, CDF and LHCb have all measured ang. asymm. A_{FB}:

- Measurements look consistent with each other but errors still large
- Latest LHCb results (1fb-1) shown yesterday at Moriond QCD...

B_d→K*μμ – angular analysis

• The angular distribution is described in terms of three angles, θ_l , θ_K and ϕ , and $q^2 = m^2_{uu}$

- Fitting these angles allows access to theoretically clean, experimentally accessible angular observables:
 - F_L, the fraction of K*0 longitudinal polarisation
 - A_{FB}, the forward-backward asymmetry and zero-crossing point [NEW]
 - $S_3 \propto A^2_T (1-F_1)$, the asymmetry in K*0 transverse polarisation [NEW]
 - A_{IM}, a T-odd CP asymmetry [NEW]

Selection

- Events isolated using multivariate (BDT) selection
- Isolate peaking backgrounds and reject with PID requirements e.g. $B_s \rightarrow \phi \mu^+ \mu^-$ with $K \rightarrow \pi$ mis-ID
- With 1.0 fb⁻¹ find 900±34 signal events
- B/S≈0.25 in region 5230 < m_{Kπμμ} < 5330 MeV/c²

Results – 1fb⁻¹

LHCb-CONF-2012-008

- 4D fit to 3 angles and mass
- Error bars include systematic uncertainties
- Data points at average q² of signal ^σ candidates in data
- These are the most precise measurements to-date
- The results are consistent with the SM prediction [arXiv:1105.0376]
- Also: world's best measurements of differential BR

A_{FB} zero-crossing point

- The zero-crossing point, q₀²
 extracted through a 2D fit to the
 forward- and backward-going
 m_{Kπμμ} and q² distributions
- The worlds first measurement of q_0^2 , at $q_0^2 = 4.9^{+1.1}_{-1.3}$ GeV²/c⁴
- Consistent with SM predictions which range from 4-4.3GeV²/c⁴ [arXiv:1105.0376, Eur. Phys. J. C 41 (2005) 173-188, C47 (2006) 625-641]

Outlook

- More data will enable a full angular fit to extract complete information from B_d→K*μμ decays
 - → host of theoretically well calculable observables
- B_s→φμμ and B⁺→K⁺μμ angular analyses also in prospect, higher K* resonances also under study

Ball et al. arXiv:0811.1214v2

Charm Physics LHCb → LHCc

- Enormous sample of charm decays also available at LHCb
- Already looked at CP asymmetry in 2010 data (38pb⁻¹), latest analysis 0.6fb⁻¹

$$A_{RAW}(f)^* = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_s) + A_{P}(D^{*+})$$

physics CP asymmetry

Detection asymmetry of D⁰

Detection asymmetry of soft pion

- If take $\Delta A_{CP} = A_{RAW}(D^0 \rightarrow K^+K^-) A_{RAW}(D^0 \rightarrow \pi^+\pi^-)$
 - production and soft pion detection asymmetries will cancel
 - No detector asymmetry
 - i.e. all the D*-related production and detection asymmetries cancel
- Theoretical predictions for ΔA_{CP} are at the 0.1% level

ΔA_{CP}

- LHCb result, 0.6fb⁻¹
 - $-\Delta A_{CP} = [-0.82\pm0.21(stat.)\pm0.11(sys.)]\%$ 3.5 σ significance
- Indirect CP violation suppressed in the difference (Δ<t>/τ=9.8±0.9%)
 so this is mostly direct CPV
- Value is consistent with HFAG average at 1σ level but more negative and more precise
- CDF showed new result at La Thuile
 - $\Delta A_{CP} = [-0.62\pm0.21(\text{stat.})\pm0.10(\text{sys.})]\%$ Less than 1σ from LHCb result

ΔA_{CP}

 Spate of theory papers discussing how difficult it is to accommodate 1% in the SM – my understanding is: hard but not completely impossible

```
arXiv:1202.3795: Repercussions of Flavour Symmetry Breaking on CP Violation in D-Meson Decays (Feldmann, Nandi, Soni)
arXiv:1202.5038: On the Universality of CP Violation in Delta F = 1 Processes (Gedalia, Kamenik, Ligeti, Perez)
arXiv:1202.3300: CP violation in D0 -> K+K-, pi+pi- from diquarks(Chen, Geng, Wang)
arXiv:1202.2866: New Physics Models of Direct CP Violation in Charm Decays (Altmannshofer, Primulando, Yu, Yu)
arXiv:1201.6204: Direct CP violation in charm and flavor mixing beyond the SM (Giudice, Isidori, Paradisi)
arXiv:1201.2565: LHCb Delta A_CP of D meson and R-Parity Violation (Chang, Du, Liu, Lu, Yang)
arXiv:1201.2351: CP asymmetries in singly-Cabibbo-suppressed $D$ decays to two pseudoscalar mesons (Bhattacharya, Gronau, Rosner)
arXiv:1201.0785: Direct CP violation in two-body hadronic charmed meson decays (Cheng, Chiang)
arXiv:1112.5268: Relating direct CP violation in D decays and the forward-backward asymmetry in ttbar production (Hochberg, Nir)
arXiv:1111.5949: (ΔA_{CP})_{LHCb} and the fourth generation (Rozanov, Vysotsky)
arXiv:1111.5196: Can Up FCNC solve the $ΔA_{CP}$ puzzle? (Wang, Zhu)
arXiv:1111.5000: On the size of direct CP violation in singly Cabibbo-suppressed D decays (Brod, Kagan, Zupan)
arXiv:1111.4987: Implications of the LHCb Evidence for Charm CP Violation (Isidori, Kamenik, Ligeti, Perez)
hep-ph/0609178: New Physics and CP Violation in Singly Cabibbo Suppressed D Decays (Grossman, Kagan, Nir)
```

- Future prospects
 - Another 0.5fb⁻¹ already on tape, expect further ~1fb⁻¹ in 2012
 - Independent measurements with other tagging methods
 - Look for direct CPV in e.g. 3-body decays

CKM Measurements

- B_s→J/ψφ measurement about looking for NP in B_s mixing
- Still scope for NP in B_d mixing?
 - Loop processes → sin (2 β + ϕ ^{NP})
 - CKM angle γ determined indirectly very precisely
 - cf. direct measurement of γ from tree processes where precision poor
- LHCb using a range of $B\rightarrow DK$ decays to measure γ in tree processes

ADS/GLW modes

First observation of the suppressed ADS modes (10σ)

Impact on γ

CKM Fitter put it all together...

Future Prospects

Many direct CPV analyses coming to maturity:

- LHCb on track to make a 5-8° measurement of γ with 2011,12 data

First observation of B⁺ $\rightarrow \pi^+\mu^+\mu^-$

• The $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay is a $b \rightarrow d$ transition

- In the SM the branching fraction is ~25x smaller than the well known $B^+ \rightarrow K^+ \mu^+ \mu^-$ (b \rightarrow s) transition and can be enhanced in new physics models
- While ratio CKM elements V_{ts}/V_{td} known from oscillation measurements, this would probe in penguin decays
- SM prediction: $B(B^+ \rightarrow \pi^+ \mu^+ \mu^-) = (1.96 \pm 0.21) \times 10^{-8}$
- Previous best limit from Belle: B(B⁺ $\rightarrow \pi^+\mu^+\mu^-$) < 6.9×10⁻⁸ (90% CL)

First observation of B⁺ $\rightarrow \pi^+\mu^+\mu^-$

- With 1.0 fb⁻¹ LHCb finds 25.3^{+6.7}_{-6.4} B⁺ $\rightarrow \pi^+ \mu^+ \mu^-$ signal events
 - 5.2σ excess above background

- B(B⁺ $\to \pi^+ \mu^+ \mu^-$) = (2.4±0.6(stat)±0.2(syst))×10⁻⁸, within 1 σ of SM pred.
- The rarest B decay ever observed

$B \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

• No search for $B\rightarrow 4\mu$ performed until now

LHCb-CONF-2012-010

- Can be mediated by decay to new physics S,P particles where both decay→μ⁺μ⁻ e.g. P particle could explain HyperCP observation of 3 events with mass ≈ 214 MeV
- Expect 4μ final state from $B_s \rightarrow J/\psi \phi$ decay where both J/ψ and $\phi \rightarrow \mu^+ \mu^-$, BR ~ $(2.3\pm0.9)\times10^{-8}$
- For the non-resonant decay SM prediction $< 10^{-10}$
- Observed number of non-resonant events consistent with background expectation → limits:
 - − B(B_s→4 μ) < 1.3×10⁻⁸ at 95% C.L.
 - − B(B_d→4 μ) < 5.4×10⁻⁹ at 95% C.L.
- Worlds first limits on these decays

Conclusions

- $B_d \rightarrow \mu^+ \mu^-$ and $B_s \rightarrow \mu^+ \mu^-$
 - [NEW] Worlds best limits, little scope left for enhancement (suppression?)
 - − [NEW] Worlds best limit for $D^0 \rightarrow \mu^+ \mu^-$
- CPV phase φ_s
 - [NEW] Worlds best measurement, little scope left for difference from SM
- b→qll penguins
 - [NEW] B_d→K*μμ Worlds best measurements, new observables, first extraction zero-crossing point, "SM wins again"
 - [NEW] $B_d \rightarrow \phi \mu \mu$ differential BR measurements
 - − [NEW] First observation of B⁺ \rightarrow π⁺μ⁺μ⁻, [NEW] First limits on B \rightarrow 4μ
- Charm
 - − Anomalous ΔA_{CP} measurement → theory problem? Or NP?
- CKM measurements
 - γ measurements: [NEW] first observation of suppressed ADS modes
 - No time to talk about γ measurement from loops (B→hh decays), other tree determinations, time dependent measurements (B_s→D_sK)...
- Radiative decays, EW programme, searches for exotics...

Backup

The Experimental Environment

- σ(pp, inelastic) @ √s=7 TeV ~60 mb, only 1/200 events contains a b quark, looking for small BR in some cases ~10⁻⁹
- In nominal conditions LHCb would operate at an instantaneous luminosity of 2×10³² cm⁻²s⁻¹, 50× lower than ATLAS/CMS, with a mean number of pp interactions per crossing ~0.5
- However, during 2011 data-taking, reduced number bunches; to get high luminosity \rightarrow smaller β^*
 - Mean number of pp interactions of 1.5 (3× design)
 - Instantaneous luminosity 3×10³² cm⁻²s⁻¹ (1.5× design)
 - Using "luminosity leveling" to keep this constant during fill

ϕ_s systematics

Source	Γ_s	$\Delta\Gamma_s$	A^2_\perp	A_0^2	F_S	δ_{\parallel}	δ_{\perp}	δ_s	ϕ_s
	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]	[rad]
Description of background	0.0010	0.004	-	0.002	0.005	0.04	0.04	0.06	0.011
Angular acceptances	0.0018	0.002	0.012	0.024	0.005	0.12	0.06	0.05	0.012
t acceptance model	0.0062	0.002	0.001	0.001	-	-	-	-	-
z and momentum scale	0.0009	-	-	-	-	-	-	-	-
Production asymmetry (± 10%)	0.0002	0.002	-	-	-	-	-	-	0.008
CPV mixing & decay (± 5%)	0.0003	0.002	-	-	-	-	-	-	0.020
Fit bias	-	0.001	0.003	-	0.001	0.02	0.02	0.01	0.005
Quadratic sum	0.0066	0.006	0.013	0.024	0.007	0.13	0.07	0.08	0.027

Analysis Strategy (1)

- Background rejection achieved with a boosted decision tree (BDT):
 - kinematical and geometrical variables
 - signal uniformly distributed 0-1
 - Trained with Monte Carlo simulation, calibrated with data
 - mass lineshape & BDT shape from B→hh events
 - expected background in search windows from fit of data sidebands

Key ingredients for $B_{s,d} \rightarrow \mu^+ \mu^-$

- Efficient trigger:
 - − p_T cuts on muons kept low → ϵ (trigger B_{s,d}→ μ + μ -) ~ 90%
- Background reduction:
 - Excellent vertex & IP resolution: $\sigma(IP) \sim 25 \mu m @ p_T=2 \text{ GeV/c}$
 - Particle identification: $ε(μ→μ) \sim 97\%$ for ε(h→μ)<1% for p>10 GeV/c
 - − Very good mass resolution: $\delta p/p \sim 0.35\% \rightarrow 0.55\%$ for p=(5-100) GeV/c
 - $\rightarrow \sigma(MB_{s,d}) \sim 26 \text{ MeV}$ [CDF: 25 MeV, CMS: $40 \rightarrow 80 \text{ MeV}$]

$B_s \rightarrow J/\psi \phi$

- Simple seln with kinematic cuts
- Most bkgrd removed by t>0.3 ps cut

 → clean signal ~21.2k events
- The data has sinusoidal terms which measure Δm_s independently of φ_s
 - Observe a central value
 - $\Delta m_s = 17.50 \pm 0.15$ (stat) ps⁻¹
 - cf. LHCb published measurement
 - $17.63 \pm 0.11 \pm 0.02 \text{ ps}^{-1}$ arXiv1112.4311
 - Gives confidence that if there is a $sin(\phi_s)$ x $sin(\Delta m_s t)$ term we would see it

ADS/GLW modes

LHCB-PAPER-2012-001

Decay time resolution

- Need good proper time resolution w.r.t. sinusoid period ~ 350fs
- We measure from data using prompt J/ψ which decay at t=0
- width ~ 45fs
- In analysis we actually use a resolution estimated per-event

Measured decay time of prompt events [ps]

Flavour Tagging

tagging efficiency $\epsilon_{tag} \sim 33\%$ effective mistag $\omega_{tag} \sim 36.8\%$ effective tagging power $\epsilon_{tag} (1 - 2\omega_{tag})^2 \sim 2.3\%$

$B_s \rightarrow J/\psi \phi$ decay angle distributions

 The CP-even / CP-odd separation is very clear in all distributions

Motivation

- Look for new physics in b,c decays
 - Heavy flavour an excellent source of loop processes
 - CP violation in the SM insufficient to explain baryogeneisis
 - Rare decays study processes with precise SM predictions where SM contribution suppressed st new physics contribution might be comparable
 - Complementary to direct searches at ATLAS/CMS
- Enormous bb, cc cross-sections at LHC → statistics, precision
 - − In LHCb acceptance $\sigma(cc)$ =1200μb, $\sigma(bb)$ =75μb → in 1fb⁻¹ roughly 10¹² cc and 10¹¹ bb produced
- High momenta, boost → good for time dependent measurements

B_d→K*μμ and B_s→φμμ differential BR measurements

- B_s→K*μμ: 900±34 signal events
- B_s→φμμ: 77±10 signal events

LHCb-CONF-2012-008 LHCb-CONF-2012-003

 These are the most precise measurements to-date and are consistent with SM expectations [J.Phys.G G29 (2003) 1103–1118]

ADS/GLW modes

LHCB-PAPER-2012-001

CKM Measurements

- Time independent strategies:
 - $-B^+ \rightarrow D(hh)K^+$
 - − $B^0 \rightarrow D(hh)K\pi^+$
 - $B^+ \rightarrow D(K_S \pi \pi) K^+$
 - B⁺→D(Kπππ)K⁺
 - $-B_s \rightarrow D_s \phi$

$$-B_s \rightarrow D_s - K^+$$

B→hh

[loops]

Phys.Lett. B253 (1991) 483 Phys.Lett. B265 (1991) 172

Phys.Rev.Lett 78 (1997) 3257 Phys.Rev. D63 (2001) 036005

CERN seminar yesterday...

From D. Straub, Moriond-EW:

Then:

Now:

