Towards a measurement of the unitarity triangle angle gamma: Observation of CP violation in B[±] → DK[±] decays

Malcolm John, for the LHCb collaboration 13 March 2012

Methods for measuring γ at tree-level $\mathbf{2}$

The techniques for measuring γ at LHCb fall into two categories: measurements of direct *CP*-violation in the decays $B^- \to DK^-$ and $\bar{B}^0 \to D\bar{K}^{*0}$, where D indicates a D^0 or \bar{D}^0 decaying into a common final state; and time-dependent measurements of CPviolation in $B^0 \to D^{(*)\mp}\pi^{\pm}$ and $B^0_s \to D^{\mp}_s K^{\pm}$ decays.

The most likely first measurement, amongst those presented here, is the two-body ADS analysis, where there is limited evidence for the suppressed modes [40, 41]; the observation of these decays would be a significant first step toward the programme outlined in this document.

LHCb "Roadmap" – 16 February 2010

(1) The importance of measuring γ with trees

CP violation known only to occur in the weak interaction of quarks

b

CKM model: 3 quark generations \Rightarrow 3 mixing angles, 1 phase

Wolfenstein expansion in powers of the Cabibbo angle, λ , up to λ^5

This single phase give rise to <u>all</u> CP violation phenomena

$$0 = 1 + \frac{V_{tb}^* V_{td}}{V_{cb}^* V_{cd}} + \frac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}$$

Wolfenstein expansion in powers of the Cabibbo angle, λ , up to λ^5

Testing the unitarity of this matrix is a huge part of flavour physics

We know the Standard Model describes Nature well.

ρ

8

ρ

9

Uses of γ from trees: comparison with loop-mediated processes

• Charmless decays of B_d and B_s mesons can exhibit CP violation from tree-penguin interference

Important ongoing analysis at LHCb

First evidence of direct *CP* violation in charmless twobody decays of B^0_{s} mesons

LHCb. arXiv:1202.6251

Uses of γ from trees: CKM triangle metrology

- sin2β is the most precisely determined component of the unitarity triangle
 the penguin contribution is usually neglected, but, this could be naive
- An example of tension in the unitarity triangle is with $|V_{ub}|$ from $B^+ \rightarrow \tau^+ \nu$ and $\sin 2\beta$
 - This is a simple tree decay (exchange diagram)
 - Small theoretical uncertainties.

• As we seek to test the unitarity of the CKM paradigm, it become increasingly important to distinguish "tree" measurements from those with sensitivity to loop processes.

12

(2) How to measure γ with trees

13

How could we measure γ ?

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition

weak phase difference:

$$= \arg\left(-\frac{V_{ub}^*}{V_{cb}^*}\right)$$

 $= \gamma$

How could we measure γ ?

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition of similar probability

weak phase difference:

$$\arg\left(\frac{V_{cs} \ V_{ub}^{*}}{V_{us} \ V_{cb}^{*}}\right)$$

$$= \arg\left(-\frac{V_{ub}^*}{V_{cb}^*}\right)$$

 \mathbf{N} ____

$$\left(-\frac{V_{ub}^*}{V_{ub}^*} \right)$$

How could we measure γ ?

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition of similar probability and a <u>common final state</u>

weak phase difference:

$$\arg\left(\frac{V_{cs} \ V_{ub}^{*}}{V_{us} \ V_{cb}^{*}}\right)$$

$$= \arg\left(-\frac{V_{ub}^*}{V_{cb}^*}\right)$$

How could we measure γ ?

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition of similar probability and a <u>common final state</u>

But the larger the interference, the greater the sensitivity to γ

• Need a $b \rightarrow c$ and $b \rightarrow u$ transition of similar probability and a <u>common final state</u>

 K^+ \overline{S} π^{-} $\overline{\mathcal{U}}$

$r_D/r_B \approx 0.6 \sim l$

- Logic is equally applicable to $B^- \rightarrow D\pi^-$ though r_B , and hence the interference is smaller $r_{B(\pi)} \sim 0.01$ compared to $r_{B(K)} \sim 0.1$
- The "physics" observables are ratios of branching fractions and CP asymmetries
- All mode has dependence on γ though this is essentially negligible in the favoured mode

"Favoured" mode

asymmetries In the favoured mode

The "physics" observables

average of *KK* and $\pi\pi$ modes $\Gamma(B^{-} \rightarrow D_{CP}K^{-}) - \Gamma(B^{+} \rightarrow D_{CP}K^{+})$ $\Gamma(B^{-} \rightarrow D_{CP}K^{-}) + \Gamma(B^{+} \rightarrow D_{CP}K^{+})$

 $A_{CP+} = \frac{2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma}$

 $\frac{\Gamma(B^{-} \rightarrow D_{ADS}K^{-}) - \Gamma(B^{+} \rightarrow D_{ADS}K^{+})}{\Gamma(B^{-} \rightarrow D_{ADS}K^{-}) + \Gamma(B^{+} \rightarrow D_{ADS}K^{+})}$

 $A^{ADS} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin\gamma}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos\gamma} \quad 20$

(3) So, where might we find billions of B^{\pm} ?

You will recognise this...

inner radius at: 29mm (injection) 5mm (stable beams)

Silicon strip vertex detector. >40 μ m pitch at 8.2mm radius

- N(pp collisions)/sec = 11M
- $N_{4\pi}(b\bar{b})/\sec = 70,000^{(*)}$
- N(events stored)/sec ~ 3,000
- $N(B \rightarrow [hh]_D h) \sim 1 \text{ every } 3 \text{ sec.}$ (*) $\mathcal{Q} \approx 2 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

27

Triggering of the exclusive hadronic final state: $B^{\pm} \rightarrow [h^{+}h^{-}]_{D}h^{\pm}$

• LHCb has a two-stage trigger. (1) hardware "L0" trigger running at 40MHz (2) software HLT running at 1MHz (3kHz accept rate in 2011)

The high level trigger for $B^{\pm} \rightarrow [h^{+}h^{-}]_{D} h^{\pm}$

- The HLT for these hadronic modes runs in two steps:
- Find a high quality, high p_T, high impact parameter track (this is often the 'bachelor' π or K from the B decay)
- If this successful, then require it to be part of a good quality displaced vertex, consistent with the *B* mass.
 - In 2011, a decision tree algorithm has been successfully used.

(4) An exclusive hadronic B decay with $BF \sim 10^{-7}$

Analysis of $B^{\pm} \rightarrow [h^{+}h^{-}]_{D} h^{\pm}$

- The full 2011 dataset is used in this analysis, approximately **1 fb⁻¹**
- B candidates are refitted, constraining vertices to points and the D-candidate mass to m(D⁰)PDG
- The data are "stripped" down to a manageable size with a loose selection.
 - At this point *B* peaks are clearly visible in the most abundant modes

didate mass to m(*D^o*)_{PDG} on.

Minimising combinatoric background

- Use the TMVA Boosted Decision Tree with 20 variables.
- Train on a simulated $B^{\pm} \rightarrow /K\pi / DK^{\pm}$ sample vs. the data sidebands from the **2010 dataset** (35 pb⁻¹)

- Useful quantities to distinguish the signal:
 - Transverse momenta
 - Impact parameters
 - Flight distances
 - Quality of vertices
 - Distances of closest approach
 - Comparison of momentum and spatial vectors
 - And some pT information from the rest of the event

Hey presto...!

Modelling partially reconstructed backgrounds from simulation

- A single PDF is used to model the part. reco. background in $B \rightarrow [K\pi]_D h$
- A sample of inclusive $B \rightarrow DX$ simulation is used to define this shape

Dedicated particle identification

Dedicated particle identification

O 01

*Achieves pion-kaon separation from ~5 to 100 GeV/c

٠

The result is applicable to all modes considered

First result: the ratio of $B^- \rightarrow D^0 h^-$ branching fractions

Non-true-D peaking backgrounds in the CP and ADS modes

e.g.
$$B^{\pm} \rightarrow [\pi \pi] K^{\pm}$$
 suffers from:

10⁻³ 10 0

 $B^{\pm} \rightarrow K \pi \pi^{\pm}$ $B^{\pm} \rightarrow [K\pi]\pi^{\pm}$ $B^{\pm} \rightarrow \pi \pi \pi^0 \pi^{\pm}$

Charmless

Cross feed

Part. reco. cross feed

- The above cut is ~85% efficient and

LHCb simulation

• Thanks to the large boost at LHCb non-true-*D* backgrounds can be easily removed.

removes 97% of zero-lifetime backgrounds

The CP eigenstate modes

The CP eigenstate modes

Favoured mode \rightarrow ADS mode cross feed

• This is just 2% of $R_{ADS(\pi)}$.

Additional partially reconstructed background for the ADS mode

- The shape derived from simulation of $B \rightarrow [K\pi]_D h$ decays works well for the ADS mode
- However, one particular B_s decay needs special consideration:

First observation of the *DK*[±], ADS mode

First observation of the *DK*[±], ADS mode

$\mathscr{B}(B^{\pm} \rightarrow [\pi^{\pm} K^{+}]_{D} K^{\pm})$ $\approx (2.2 \pm 0.3) \times 10^{-7}$

(5) Wasn't this talk about CP violation?

47

The favoured mode, split by the charge of the B

KK mode, split by the charge of the B

$\pi\pi$ mode, split by the charge of the *B*

$\pi\pi$ mode, split by the charge of the *B*

ADS mode, split by the charge of the B

ADS mode, split by the charge of the B

 4.0σ

(6) Interpretation of the present result, and thinking about the future

54

But how does this tie-in with γ ?

- All of the physics observables may be written in terms of the "fundamental" parameters: r_B , γ , δ_B
- A full multi-mode treatment, leading to an LHCb measurement of r_B , γ , δ_B is in preparation.
- However, in the short-term, we can get an idea by:
 - using the published results;
 - taking the standard equations (below);
 - assuming normally distributed errors on the observables and no correlations between them.
 - take the strong phase δ_D is well known. (neglecting a ±12° uncertainty)

$$R_{CP+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$$

$$A_{CP+} = \frac{2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma}$$

$$R^{ADS} = \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D)}{1 + (r_B r_D)^2 + 2r_B r_D \cos(\delta_B - \delta_D)}$$

$$A^{ADS} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D)}$$

ntal" parameters: r_B , γ , δ_B δ_B is in preparation.

elations between them. y)

 $\frac{\cos\gamma}{\cos\gamma}$

 $\cos\gamma$

Using: $R_{ADS(K)}$ and $A_{ADS(K)}$ Г_в γ 4.5[4.5 3.5 3.5E 3.5 зĘ ЗĿ 2.5 2.5E 2.5 2Ē 1.5 1.5F 1.5 1F 0.5 0.5È 0.5 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 3 2 4 5 6 **r_B νs**γ $r_B vs \delta$ δ **νs** γ 4.5 4.5 3.5 -3 -2.5 2.5 3 1.5 .5 0.5 0.5 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 56 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0**L** 0

-5

Aside: important information on γ comes from the "GGSZ" method

- Exactly the same idea: interference between $b \rightarrow u$ and $b \rightarrow c$ transitions but this time, use a three-body common final state
 - $B^- \rightarrow D K^ D \rightarrow K_S^0 \pi^+ \pi^-$

• This method is particularly useful for combatting the trigonometric ambiguities present in the determination of γ from the ADS & *CP* methods

$$\frac{r_B + r_D + 2r_B r_D \cos(\sigma_B + \sigma_D)\cos(\sigma_B + \sigma_D)\cos(\sigma_D)\cos(\sigma_B + \sigma_D)\cos(\sigma_D$$

Many thanks to the CKMFitter collaboration for absorbing these results

This is just the first step for LHCb!

The most likely first measurement, amongst those presented here, is the two-body ADS analysis, where there is limited evidence for the suppressed modes [40,41]; the observation of these decays would be a significant first step toward the programme outlined in this document.

Many direct CPV analyses coming to maturity:

 $B^- \rightarrow D K^ B^{\overline{U}} \rightarrow D K^{*0}$ $D \rightarrow K^+\pi^-$ | presented $D \rightarrow K^+ \pi^ D \rightarrow K^-K^+$ | today. CP $D \rightarrow K^-K^+$ Favoured $D \rightarrow \pi^{-}\pi^{+}$ violation $D \rightarrow \pi^{-}\pi^{+}$ observed mode first $D \rightarrow \pi^- \pi^+$ observed $D \rightarrow K_S^0 \pi^+ \pi^$ in 2010 $B^- \rightarrow D K^- \pi^+ \pi^ D \rightarrow K_S^0 K^+ K^ D \rightarrow K^+ \pi^- \pi^+ \pi^ D \rightarrow K^+ \pi^ D \rightarrow K^-K^+$ $D \rightarrow K^+ \pi^- \pi^0$ $D \rightarrow \pi^- \pi^+$

LHCb "Roadmap"

arXiv:1201.4402

And unique to LHCb: γ from B_s tree decays

Precise measurement of

$$B_s^0 \rightarrow D_s^- K^+$$

branching now made. Time-dependent measurement of γ on-going.

$${\cal B}(B^0_s o D^-_s K^+) = (1.90 \pm 0.12 \pm 0.13)^{+0.12}_{-0.14} imes 10^{-4}$$

LHCb is on-track to make a combined measurement of γ using B^{\pm}, B^{0}, B_{s} tree decays, to an accuracy of 5~8° with the 2011+2012 dataset.

Penguins in $sin(2\beta)$: $B_s \rightarrow J/\psi K_S$

- The unitarity triangle shows some tension between $|V_{ub}|$ and $sin(2\beta)$.
- How much of "sin(2β)" is sin(2β)? How large are the hadronic penguin contributions?
- Could be eventually deduced by comparing $B_d \rightarrow J/\psi K_{S^0}$ and its U-spin partner: $B_s \rightarrow J/\psi K_{S^0}$
- First step: confirmation in LHCb dataset.

$$\frac{\mathcal{B}(B_s \to J/\psi \mathbf{K}_{\mathrm{S}}^0)}{\mathcal{B}(B_d \to J\psi \mathbf{K}_{\mathrm{S}}^0)} = (3.78 \pm 0.58 \pm 0.20 \pm 0.3)$$

-1

LHCb-CONF-2011-048

Dealing with production/detection asymmetries

- $A_{CP}((K\pi)_D\pi) = A_{raw}((K\pi)_D\pi) A_{Prod} A_K$ $A_{CP}((K\pi)_DK) = A_{raw}((K\pi)_DK) A_{Prod} 2 \times A_K$ $A_{CP}((\pi K)_D \pi) = A_{raw}((\pi K)_D \pi) - A_{Prod} + A_K$ $A_{CP}((\pi K)_D K) = A_{raw}((\pi K)_D K) - A_{Prod}$ $A_{CP}((KK)_D\pi) = A_{raw}((KK)_D\pi) - A_{Prod}$ $A_{CP}((KK)_DK) = A_{raw}((KK)_DK) - A_{Prod} - A_K$
 - $A_{CP}((\pi\pi)_D\pi) = A_{raw}((\pi\pi)_D\pi) A_{Prod}$ $A_{CP}((\pi\pi)_D K) = A_{raw}((\pi\pi)_D K) - A_{Prod} - A_K$

FIXED (%) $A_{Prod} = -0.8 \pm 0.7$ $A_K = -0.5 \pm 0.7$ $= 0.0\pm 0.7$

Track momentum of final sample

10³