An ATCA framework project for the RD51* SRS electronics

Hans Muller, CERN PH
(Convenor of WG5 on Electronics for MPGD detectors)

* http://rd51-public.web.cern.ch/rd51-public/

SRS idea (RD51 collaboration)

- choose the frontend (ASIC, hybrid) that fits your detector
- provide a common readout backend with standard DAQ SW
- start from minimal systems > scale to large systems

HOW:

- connect specific frontends via a "chip-link" (HDMI etc)
- 19" crate system
- FEC-chip link adapters for Analogue, Digital, Copper, Fiber
- FEC: an FPGA board handling Data, Trigger and Control
- Small Systems: (<2K) direct GBE link from FEC to DAQ
- Medium sized system (<16k) add Network switch
- Large systems, DTC links ->1 SRU -> 10 GBE
- Open developer concept: community-driven development
- start from 100 chann. SRS with full line systems support
- port successful DAQ and Control SW for SRS

SRS readout architecture

DAQ/Online/Offline Control,Trigger

Networks 1/10/48 Gbit

COMMON

Readout Units

DTC links: CAT6
Data/Trigger/Control

FEC cards

chip-link adapters

Chip links

Frontend ASICS/Detectors

SRS "as is" implementation

BASICS:

table-top Combo = generic FEC card + detector-specific link adapter card

Chip link (HDMI up 25 m) between Combo and detector-resident hybrids, 8 per Combo

Frontend chips on MPGD carrier, sparc-protected, powered via HDMI.

APV25, Beetle, VFAT .. more planned 16/04/2012

Systems:

Powered SRS Crates, 6U and 3 U, up 16 k channels/crate Commercially produced and sold via CERN store

Rack systems up 5 Crates/82 k channels, parallel FEC readout via 1 Gb DTC links (Data-Trigger-Control)

1 SRU cluster concentrator / Rack 40 DTC links input, 10 Gb to DAQ 1 Gb Slow Controls, 1 Gb Monitoring 1 TTC for trigger

Hans.Muller@Cern.ch

Online software for SRS

SRS-Labview

DATE, MMDAQ, RCDAQ (Linux based)

Root Analysis: Event statistics, distributions, cuts and fits

Online Monitoring: pulse-shape, x-y plots, pedestals, noise

Photo of SRS 19"

Minicrate, 5kG, up 4 k channels

SRS sales via CERN store production via PRISMA

Eurocrate with SRU on top up 5 crates / rack

Photo DTC link readout (ALICE EMCaL)

SRS User Status 4/2012*

CERN experiments

- ATLAS CSC upgrade MMegas (8kch APV-SRS systems, 1st SRS testbeams, MMDAQ developer)
- ATLAS CSC upgrade MMegas, (VMM1 readout chip developer, SRS Adapter by Arizona Univ, MMDAQ)
- ALICE EMCaL + FOCAL, SRU-based backend (50 kHz upgrade via SRS, DATE, new: Focal readout via SRS-Beetle?)
- ALICE TPC upgrade, SRS readout electronics with DATE backend?
- NA62 ref. tracker with Micro-Megas (1kCH-SRS Minicrate, MMDAQ)
- CMS high Eta GEM collaboration (VFAT hybrid and VFAT SRS adapter, in prep.)
- Totem upgrade R&D , SRS VFAT readout, DATE ?

HEP experiments

- NEXT Coll., dual Beta decay, SiPM, PM (Collaboration on SRS HW & FW, FEC cards, DATE)
- BNL GEM detector readout (2kCH. APV Minicrate, PHENIX SRDAQ porting to SRS)
- Jeff. Lab Virginia Univ. GEM prototyping, (Minicrate, Offline Data evaluation via AMORE + DATE)

Applications with Cosmic Tomography

- FIT Florida, Muon Tompography for homeland security, GEMs (1st 16K SRS application, DATE)
- Geoscienes CRNS- Waterquality in Rocks, MMegas (5kCh SRS Crate, DATE, Labview)

R&D with MPGD's (small systems)

- Bonn/Mainz Univ, Timepix readout (SRS-Timepix adapter card)
- Helsinki HIP, GEM-MMega (SRS evaluation, Trigger pickup box via CSP)
- MEXICO UNAM, THGEM 2x (SRS Minicrate, DATE)
- C.E. Saclay, Micromegas (2k Ch SRS Minicrate, MMDAQ)
- WIS Israel, THGEM 3x (Minicrate, Beetle hybrid, SRS- Labview Beta tester
- INFN Naples (Minicrate, Labview for SRS developer, CTF card, Zero-supression code

<u>Teams waiting for commercial SRS delivery (orders via CERN store)</u>

- RD51 lab, Radcore, WIS, USTC, SAHA, INFN Bari, INFN Napoles, Stony Brook, Freiburg Univ
- Yale Univ, J-Parc-RIKEN, East Carol. Univ., Jeff-Lab, Tsinghua Univ, Univ Texas,

^{*} in red: SRS developers in green: to be confirmed in blue: USER

SRS price/channel Gas detectors

Example: 82k channel SRS system (1 Rack, 5 crates, 1 SRU)

640 hybrids	~ 65 k	hybrids 34%
5 Crates full power	~ 6 k	electronics + cables 66%
1 SRU in Alu box	~ 3 k	
40 FEC + ADC cards	~ 83 k	
320 cables (HDMI+Flat)	~ 6 k	Total 163 kEu
		Channel cost (82 k) ~ 1.98 Eu

Project*: re-map SRS in ATCA

- 1.) higher channel integration => reduce cost/channel for large systems
- 2.) certified crate standard
- 3.) replace DTC cables by backplane

ATCA implementation draft

ATCA blade = FEC equivalent

SRS FEC card: Virtex 5, DDR2 1 Gbit SFP

SADC adapter mezzanine

=equivalent of ADC adapter

SRS ADC card 8 HDMI ports 16 x ADC 12bit@40 MHz

ATCA Blade with SADC adapter

= equivalent of SRS combo (FEC+ADC)

24 HDMI ports
= 48 hybrids 128 ch.
= 6144 channnels

SRS FEC + ADC max 8 HDMI ports per Combo

ATCA blade and RTM

= similar CTF for local I/O and trigger options

SRS: CTF card Clock, Trigger and IO

HDMI- chiplink to Frontend

RTM and backplane

=> power and DTC link via fabric

ATCA: -integrated p-p STAR technology

Slot 1 has 8 differential pairs to ALL 13 right-hand slots with clock capability 6 GHz

→ This fabric is superior to CAT6 based DTC link cables
Hans.Muller@Cern.ch

SRS-ATAC blades stack

11 Slots a 6144 channels ~ 67 k channels in one Crate

SRS Crate/Rack environments "as is"

ATCA equivalent SRS Eurocrate

ATCA 14 slots Crate - SRS

- 11 FEC-ATCA blades
- 64 ADC ch. per FEC board
- 704 ADC channels in shelf
- 90112 channels per shelf
- 1 SRU blade in the shelf
- · remote programing
- optional CPU in the shelf
- + 2 FEC-ATCA in no CPU&Switch

67 k channel/crate

Scalable Readout System in an ATCA – February 20, 2012, CERN

eicSys GmbH
Embedded Integrated Control Systems

15/26

SRU* "as is"

1st Step

connect existing SRS module via DTC links to RTMs

2nd step: Implement SRU for Slot 1

SRU-ATCA

ATCS equivalent for SRS Minicrate

ATCA 5 slot - solution for a small system

- 4 FEC-ATCA blades
- 256 ADC channels in shelf
- 32768 channels per shelf
- 1 SRU blade in the shelf

Scalable Readout System in an ATCA - February 20, 2012, CERN

18/26

eicSys GmbH

Embedded Integrated Control Systems

SRS frontend Hybrids

1st version uses 128 channel APV chip Alu-wire bonded, topglobbed)

MPGD-standard connector

Sparc protection

PCB with ENIG surface for bonding pads, embeded vias

Readout and power via HDMI Micro connector

Master-Slave cable

Chamber grounding via MMCX plugs

SRS ad-hoc chip-link: HDMI

Ad-hoc: cheap, v. high quality, 3Gbit/s, power, works very well

Max distance ca 30 m

Upgrade plans for frontend

3: provide power to ASICS a la HDMI?

HEP requirement to a commercial crate standard

- Operation in Magnetic fields (up 10 Gauss, no Ventilators, no Ferrite DC-DC, no magentic Materials)
- Real-time re-configuration (SEU tolerant systems, Cavern ~ 10 kRAD, Racks up to 50 kRAD)
- Ground-loop avoidance (good filters on PWR, GND, Signals and Network)
- Immunity to HV discharge transients (ESD protection on all signal inputs)

Message to the XTCA community

- SRS is established in the MPGD detector community but does not exclude other detector communities
- A significant SRS user-base ready adopt XTCA for large system plans
- SRS includes: Hybrids, DAQ Software, Slow Controls
- SRS could be a motor for xTCA-based systems
- Joining SRS means joining ~ 30 teams : WELCOME

Backups

Scalable Detector Controls (SDC)

- •Large systems require SRU acting like a "gateway"
- Each connected node (FEE, TRU ..) has its own IP
- Each type of node peripheral has a unique *port number*.

Node peripherals: are like services on network nodes

different chips/hybrids /virtual components

SRS UDP data protocol

17-Apr-12

SRS users

Online, Monitoring and Control systems on a Laptop