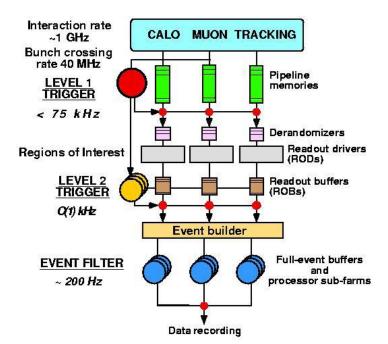
xTCA in ATLAS for a possible replacement of VME


Philippe Farthouat, CERN

A bit of history

- Readout architecture
- Use of VME in ATLAS
- Is VME not adequate for future systems?
- Interest in ATCA
- Tentative time scale for development and deployment of a new standard
- Summary

Current Readout Architecture

- ReadOut Drivers (ROD) and ReadOut Buffers (ROBIN element of the ROS) separated
 - ▶ ROD in VME
 - ROBIN in PCs
 - S-Link in between
- Reasons for separation
 - Easier commissioning
 - Factorisation

VME based RODs

In normal data taking

- The VMEbus does not see the data
 - They go through S-Links
- VMEbus used for configuration, control and monitoring
 - Limited bandwidth

During special runs (standalone, calibration,...)

- DAQ software running in the VME crate
- Trigger rate can be limited

What has been good with VME

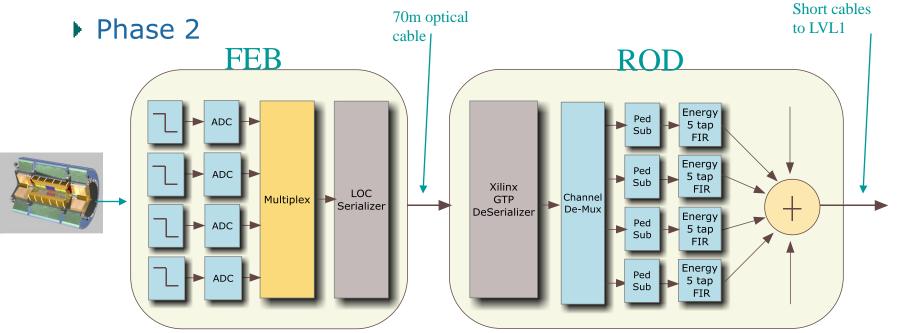
- Availability of standardised crates and easy procurement process
 - Easily integrated in the counting room
 - ▶ Size, cooling, ...
 - Different flavours although a single protocol
 - ► Size, power supplies
- Availability of maintenance contract
- Availability of Single Board Computers
 - Family with upgrade capability
 - Standard ATLAS software
 - ROD crate DAQ
- Overall relatively low overhead cost despite the use of high-end crates
 - 840 ChF per slot for a 9U system & 640 ChF per slot for a 6U system
 - Includes bin, fan-tray, power supply and SBC
- About 220 crates in ATLAS

Is VME not adequate for future systems?

- If we keep the same readout architecture and the same functional boundaries
 - VME can still do the job
 - Monitoring tasks could run in PC connected to ROD through ethernet
- However, it's difficult to predict what VME will be in the years 2022–2032 (HL-LHC)
 - First designs in VME beginning of the 80's (previous century)...

What could be a replacement?

- There are several possibilities
 - VXS as a natural successor of VME
 - ATCA or µTCA
 - Although µTCA seems a bit small wrt our IO problems
 - Direct readout in PCs
 - See for instance A. Kugel's presentation in the IT readout session during the last AUW

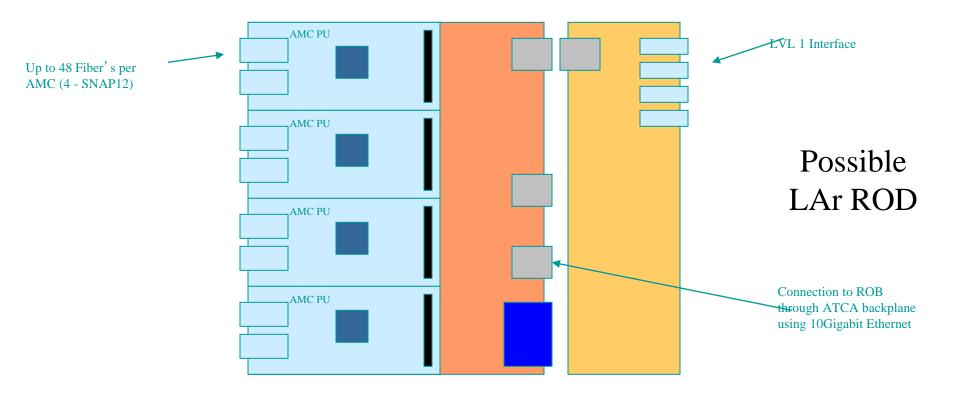

https://indico.cern.ch/sessionDisplay.py?sessionId=30&confId=108365#20111115

- No standard
 - ▶ Define a BIN with Fan Trays and power supplies
 - (GB)Ethernet interfaces on each board
 - Ethernet switches and PCs
 - ▶ i.e. a poor man ATCA...

Currently, most of the developments for long term upgrades in ATLAS are using ATCA

Interest in ATCA (1)

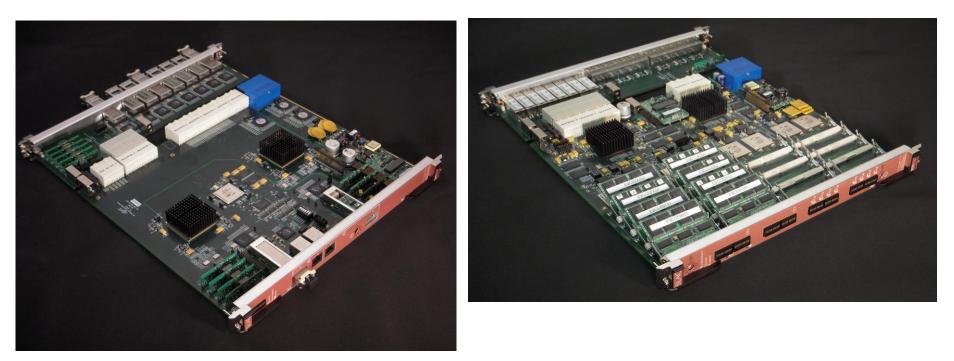
High speed connections between boards could be very useful for the calorimeters upgrades



In the case of an architecture change with a merge of the ROD and the ROS on the same physical system

Not at all the baseline!

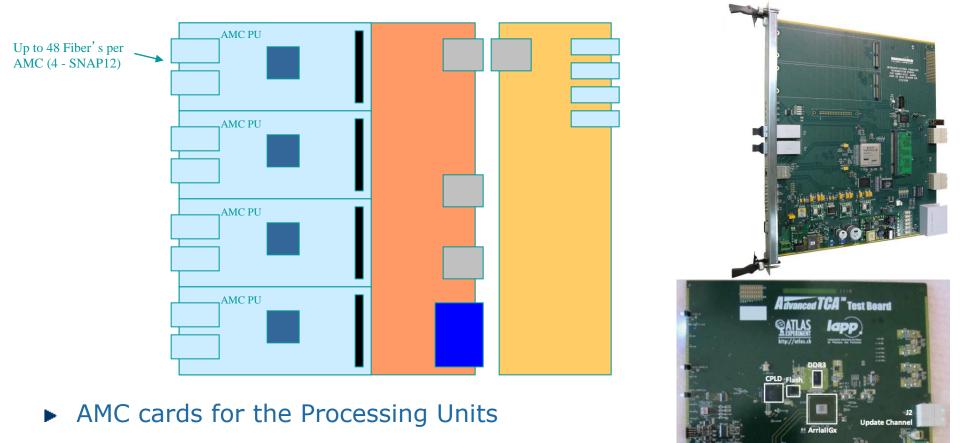
Why ATCA?


► Need boards large enough to accommodate the I/O

On-going Projects (1)

- Developments at SLAC
 - Presented several times, e.g.
 - <u>http://indico.cern.ch/event/twepp10</u>
 - http://indico.cern.ch/event/ACES2011
- TTC included in new generations
- First system used for reading out the new IBL0 pixel layer
 - Although the new ROD for IBL will be in VME

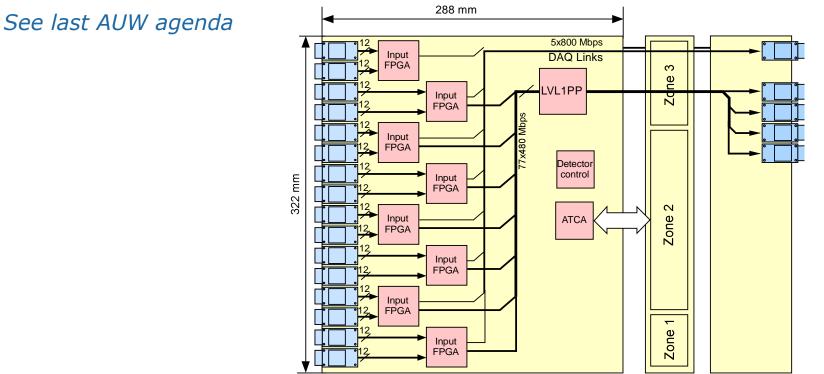
GEN-I RCE board + RTM



xTCA Interest Grup April 2012

On-going Projects (2)

LAr calorimeter goal: 150 Tbps total system



- ATCA Carrier board as mother board
- Controller mezzanine

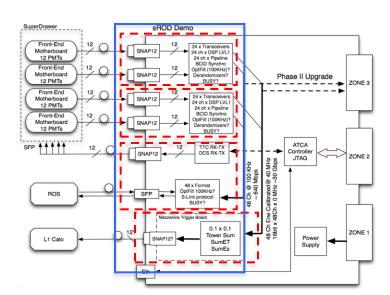
On-going Projects (3)

Tile Calorimeter

- Development of mezzanines
- Optical link card with SNAP12
- GBT receiver
- sROD Demo being designed

From Alberto Valero Stanford Atlas Upgrade week

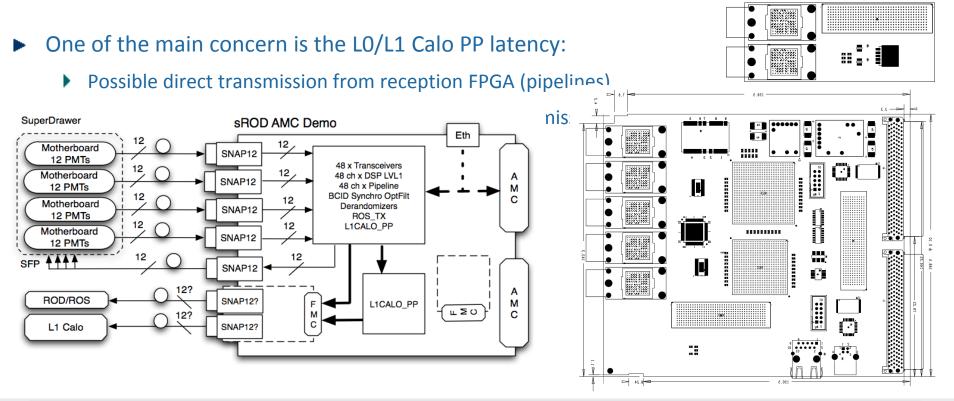
Options for sRODdemo


- A) Complete design of the ATCA board
 - CONS:
 - We don't have experience with ATCA. Short term
 - PROS:
 - Gain experience. Full custom
- B) Design 3 AMC cards for a commercial ATCA-Carrier
 - PROS:
 - ATCA interface and power provided by the carrier
 - Design AMC with main functionalities
 - AMC board might be used in MobiDick 4'
 - CONS: Data transfer between AMC slots: bandwidth and latency

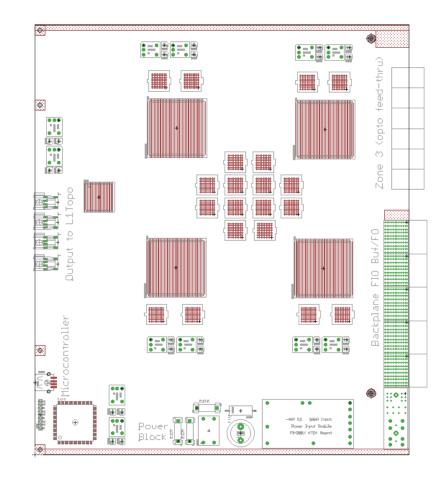
C) Design 3 in 1 AMC

- PROS:
 - Same as before but no problem with communication between AMCs
- CONS:
 - Not sure it is possible due to mechanical constraints
- D) Design RTM for ATCA-Carrier
 - PROS:
 - Design a custom RTM with main functionalities and I/O
 - CONS:
 - Reduced space
 - Very similar to design an ATCA custom board (A)

Standard ATCA Carrier with 4 AMC slots



From Alberto Valero Stanford Atlas Upgrade week


The AMC sRODdemo board

- We are evaluated the possibility of using double or triple AMC
 - The goal is to have a density of channels similar to what we will have in the final sROD
 - The pre-placement of components shows that double size is enought
- FMC boards for expansion: Data transmission, clock management unit
 - FMC boards allows us to test different approaches for communication with L1Calo and ROS systems.

On-going Projects (4)

Level-1 calorimeter upgrades for Phase 1

Fast Track Trigger (FTK) Phase 1 at the latest

Wish list

- Whatever the selected new standard will be we'll need the following:
 - Integration in the existing infrastructure
 - Cooling with vertical air-flow
 - Compatibility with the main power distribution
 - Common family of crates (as done for VME)
 - Not too many variants
 - Controller (Shelf manager & control software, embedded CPU?)
 - Purchasing and maintenance contracts

I.e. the same kind of support we have today with VME

Tentative Schedule

- Large change in off-detector electronics not before Phase-1 (2018 or so) and mainly for Phase-2
- Decision on which platform is to be used to be done this year
- Availability of standard elements (crates, etc.) for deployment 1–2 years after(?)

What's going on

- A task force with representative of each subsystems + TDAQ to define a replacement is being put in place
 - Expected conclusion (decision) at the end of the year
- When a standard is selected, define the main characteristics of the system we wish
 - Power, Cooling, Possible special use of the backplane (e.g. for TTC distribution),...
 - Procurement organisation
 - If ATCA is selected one could have common requirements with other experiments (e.g. LHCb)
 - Very much willing similar service as for the VME