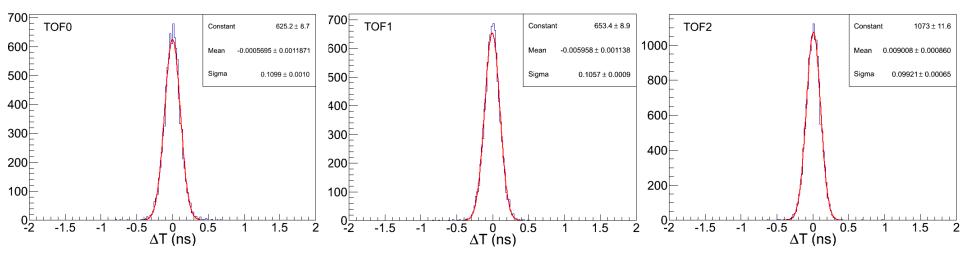
Physics Program and Runs: Autumn 2011 & Step IV

V. Blackmore MICE Project Board, 08/03/12

Dec 2011 Run


- MICE recently ran during the December ISIS User Run
- Planned and organised by Linda Coney (Online Group) and Yordan Karadzhov (MICE Operations Manager)
- Dates set early 2011
 - Run planning initiated 8th August
 - Ran 1st to 16th December

- MICE needs to know:
 - What?
 - Where?
 - When?
- Many detectors to do this
 - Upstream: TOF0, TOF1, CKOVs
 - Downstream: TOF2, KL, EMR
- Must understand our detectors
 - \rightarrow Calibration

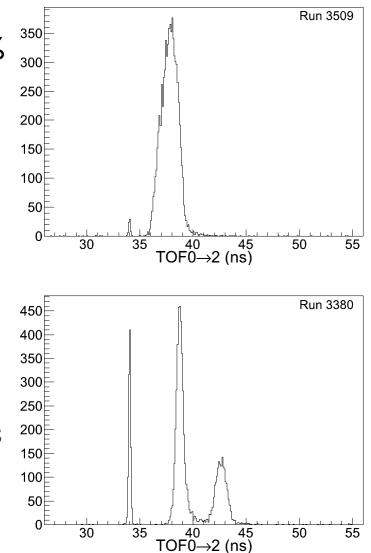
Dec 2011: TOF Performance

- Identifying time & particle species depends on timing resolution of TOFs.
 - TOF0: 55 ps
 TOF1: 60 ps
 - TOF2: 50 ps

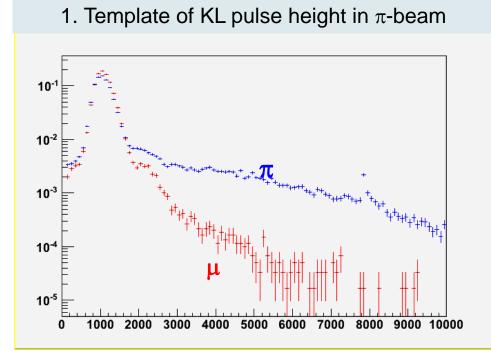
- New calibration:
 - TOF0: 55 ps
 - TOFI: 53 ps
 - TOF2: 50 ps

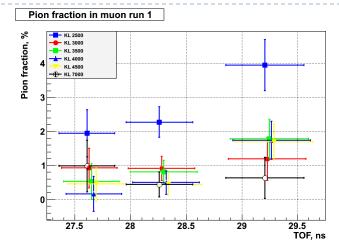
Yordan Karadzov, Durga Rajaram

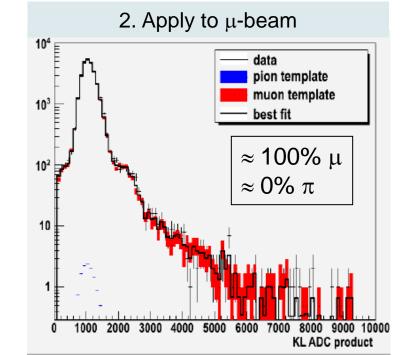
Dec 2011: e⁺/e⁻ Time of Flight


- 70 ps difference in electron/positron time of flight
- Not a path length difference

- Create 5 x more positive than negative particles
- Increased rate →
 overworked PMTs
 respond more slowly

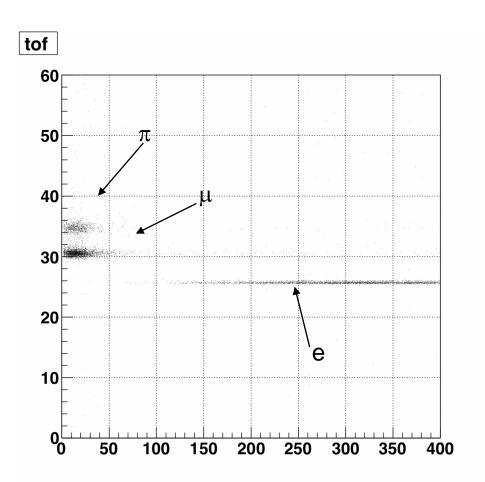

Dec 2011: π -Contamination


- (Simplistic) simulation of
 π-contamination in μ-beam 1-5%
- Better to make a direct measurement
- Use KL
 - $\pi \rightarrow$ hadronic interactions
 - $\mu \rightarrow$ no hadronic interactions
- Calibrate method using a "π"-beam
 - Train using π and μ with same time of flight in π-beams of suitable momenta.



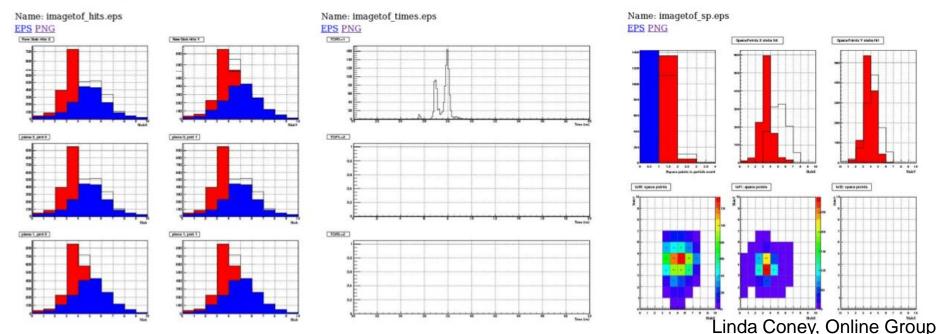
Dec 2011: π -Contamination

- Found that π make up less than I 2% of our μ -beam
- Further analysis needed to understand systematic errors and improve precision



Dec 2011: Cherenkov Studies

- CKOV count vs.TOF for a low momentum π–beam
 - >40 photoelectrons per electron transit
 - I 2 photoelectrons per π/μ transit
 - Good separation identifying particles
- Analysis underway
- Next: high momentum beams!

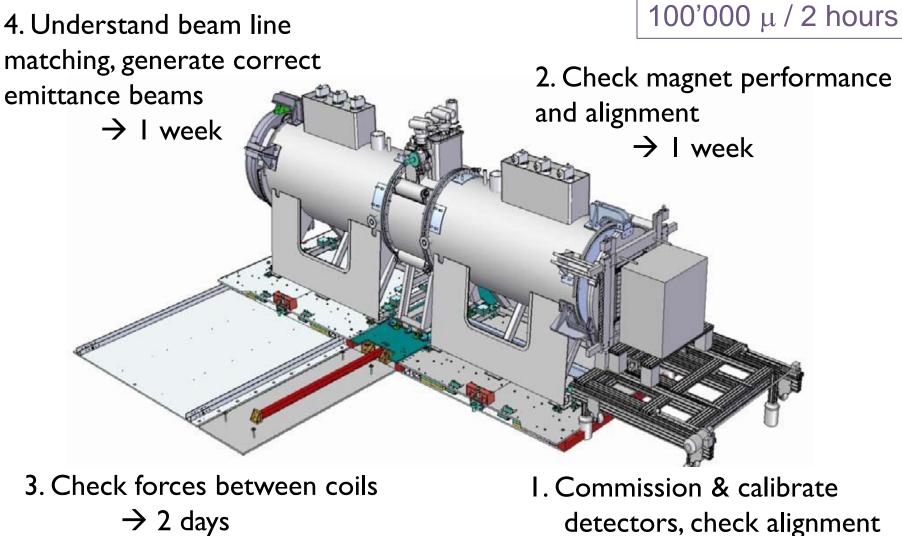

Dec 2011: Summary

- Excellent organisation = efficient run
- Online reconstruction available made the run very successful

8/13

- Lots learnt from >250 GB of data taken (~50 μ /s)
 - Calibrations, rate effects, contamination...
 - More to learn upon further analysis

MAUS histograms



Step IV: Run Plan

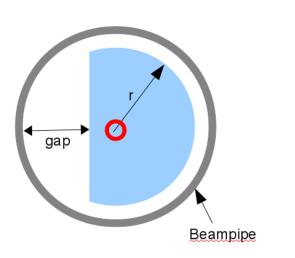
9/13

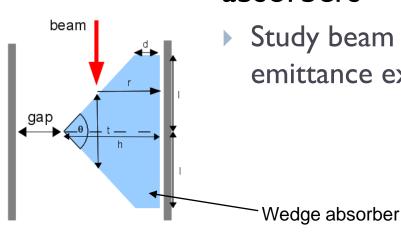
- Step IV physics objectives and running discussed during CMs and analysis meetings
 - <u>Current</u> understanding of desired measurements given here
 - Not a definitive run plan
 - Exhaustive list of measurements in MPB report

Steps II and III in Step IV

 \rightarrow ramp up system!

tectors, check align → I week


Step IV


- Understanding MICE optics; momentum acceptance, aperture
 - Empty channel, baseline beam settings
 - Momentum scans
 - Different β-functions
 - Different ε
 - Different field configurations.
 - Then compare with simulations!

- Time consuming, but necessary
 - 3 momenta, 3 emittances,
 2 field configurations,
 4 β-functions,
 72 measurements
 - Approximately 140 hours (for 100k µ) + time to change beam settings
- Finally, exercise the cooling formula!

$$\frac{d\varepsilon_n}{dz} = \frac{-\varepsilon_n}{\beta^2 E} \left\langle \frac{dE}{dX} \right\rangle + \frac{\beta_t \left(0.014 \text{ GeV}\right)^2}{2\beta^3 E m_\mu X_0}$$

- First demonstration of μ cooling in MICE
 - Liquid H or LiH disc
 - ▶ 3 momenta, 3 emittances, 4 β -functions, 2 field configurations = 72measurements

- Then move to other solid absorbers
 - Al, C
 - Verify material dependence
 - Measure multiple scattering, energy loss, cooling
- Finally investigate wedge absorbers
 - Study beam dispersion, emittance exchange

Step IV: Timeline

ISIS User Runs:	
Feb – March 2013	 Commission and calibrate detectors, check alignment Magnet performance and alignment Diffuser and beam matching Empty channel measurements
May 2013	 First demonstration of cooling Empty absorber, Liquid Hydrogen absorber Full set of measurements
July, 2013	 Cooling measurements with LiH solid absorber Verification of cooling formula with different solid absorbers Multiple scattering, energy loss
October, 2013	
November, 2013	• Wedge and half-wedge absorbers

13/13