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Why single-top production?

Electroweak single-top production rate competitive with
QCD-mediated t̄t cross section

LHC(7 TeV) : σt̄t = 162.4 pb

σt + σ̄t = 78.3 pb

⇒ complementary informations on top-quark properties!
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sensitive to charged-current interactions of the top quark
⇒ test V − A nature of the Wtb vertex

σ ∝ |Vtb|2 → direct extraction of CKM matrix element Vtb

probes bottom PDF inside the proton

beside being an important signal, single-t production is background to Higgs production

generally relevant to new physics searches (top anomalous couplings, 4th generation
searches, FCNC, charged-Higgs production,...)

Almost too good to be true! Unfortunately experimental extraction of the single-top signal
much more challenging than top-pair measurements due to large background from Wj and t̄t
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Single-top production in the SM

t−channel s−channel associated W−t production 

In the SM three production modes:

t-channel production (k2
W < 0)

s-channel production (k2
W > 0)

associated tW production (k2
W ∼ M2

W )

t-channel production is dominant channel at both Tevatron and LHC
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Different production channels?
Note that distinction into 3 production channels is somewhat ambiguous...

t-channel and s-channel mix beyond LO (though no interf. at NLO due to colour)

t−channel s−channel

More seriously tW production mixes with (much bigger) t̄t production at NLO

associated tW production tt production

⇒ from a theoretical point of view most satisfactory solution is fixing a specific physical final
state (i.e. jets+leptons+6ET ) and include the full gauge-invariant set of relevant contributions
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Single-top production at NLO
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NLO QCD
O(αs) corrections to the tree-level inclusive cross sections have been known for a while:

- t-channel [Bordes, van Eijk ’95; Stelzer, Sullivan, Willenbrock ’97]: ∆σNLO/σLO ∼ 10%

- s-channel [Smith, Willenbrock ’96]: ∆σNLO/σLO ∼ 40− 50%

- tW production [Zhu ’02; Cao ’08]: ∆σNLO/σLO ∼ 50%

and differential cross section computed by [Harris, Laenen, Phaf, Sullivan, Weinzierl ’02; ZTOP ’04]
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big differences between NLO calc. and LO showers⇒ shows necessity of full NLO result!

P. Falgari (ITF Utrecht) TOP2012 6 / 28



NLO EW/SUSY QCD
NLO EW corrections and SUSY QCD corrections also available for t-channel production and
associated production [Beccaria, Carloni Calame, Mirabella, Piccinini, Renard, Verzegnassi ’07/’08]
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EW corrections small (. 5%) and SUSY QCD corr. negligible (< 1% for mSUGRA SU1)
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5-flavour vs 4-flavour scheme

t-chan. NLO results first computed in the 5-flavour scheme (5F). Recently NLO results in the
4-flavour scheme (4F) have also become available [Campbell, Frederix, Maltoni, Tramontano ’09].
What are the main differences between the two schemes?

5−flavour scheme 4−flavour scheme

5F: initial b from PDF inside proton

- large logs lnµ2/m2
b resummed by

bottom PDF evolution

- exact factorization of QCD corrections
to heavy/light currents at NLO and
simpler calculation

- mb dependence and spectator b-jet only
described from NLO onwards

4F: initial b-quark from gluon splitting

- potentially large logs not resummed

- almost exact heavy/light currect
factorization. More complicated
calculation due to additional mass and
additional external leg.

- spectator b-jet observables and mb

dependence already at LO
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NLO calculation in 4F scheme
[Campbell, Frederix, Maltoni, Tramontano ’09]

small differences between 4F and 5F results for total cross section
(∼ 6%, compatible with theory uncertainty)

larger differences in distributions (10− 20%), especially for spectator b-jet
(expected, since effectively LO in 5F calculation)
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Top-quark decay

Precise description of the single top pro-
duction requires consistent inclusion of
top quark decay (theoretically a delicate
business due to gauge-invariance issues...)

Decay commonly treated in Narrow-Width Approximation (NWA)

1
|p2 − m2

t + imtΓt|2
=

π

Γt
δ(p2

t − m2
t ) +O

„
Γt

mt

«

- matrix element factorizes into production AND decay of an on-shell top (p2
t = m2

t )

- preserves top-quark spin correlations between production and decay

- includes NLO corrections to production AND decay, but no production/decay
interferences (expect effect ∼ Γt/mt ∼ 1% on total cross section)

- off-shell effects are completely lost (again expect effect ∼ Γt/mt).
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Single-top production and decay at NLO
[Campbell, Ellis, Tramontano ’04; MCFM; Cao, Schwienhorst, Yuan ’04+Benitez, Brock ’05]

HT Qlη(j1)

Decay corrections modify significantly the normalization (though shape is preserved...)
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Beyond fixed-order on-shell NLO

inclusion of off-shell effects and production/decay interferences

resummation of threshold logarithms

matching of fixed-order NLO results and MC parton showers
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Production-decay interferences in single-top production

NWA only includes factorizable corrections to on-shell production and decay!
⇒ no information on off-shell effects (p2

t 6= m2
t ), non-factorizable corrections and

non-resonant (background) diagrams

non−resonant

These effects are expected to be of order Γt/mt ∼ 1% (true for the total cross section).

However: small effect is partly due to large cancellations between virtual and real
non-factorizable corrections⇒ off-shell and non-factorizable effects could be larger for
arbitrary kinematical distributions
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Effective-theory approach to single t production

[PF, Giannuzzi, Mellor, Signer ’10, ’11]
Consider a resonant unstable top (rather than on-shell) and use the small virtuality of t as an
expansion parameter, δ ≡ (p2

t − m2
t )/m2

t � 1

p2 ∼ m2
t

p2 ∼ m2
t δ

2

×C(1)

Hard region (q2 ∼ m2
t )

⇒ factorizable corrections
(⇔ corrections in the NWA)

Soft region (q2 ∼ m2
t δ

2)
⇒ non-factorizable corrections
(⇔ off-shell effects and
production/decay interferences)

Effective-theory expansion resums finite-width effects, includes leading non-factorizable
corrections and preserves gauge invariance
+ much simpler than full 1-loop calculation in the Complex Mass Scheme!
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Integrated cross section (mt = 172 GeV, µF/R = mt/2)
pp→ JbJle

+ 6ET + X pp→ Jb J̄be+ 6ET + X

pT (Jb) > 20 GeV pT (Jb) > 20 GeV
pT (hardest Jl) > 20 GeV pT (J̄b) > 30 GeV
pT (extra J̄b) < 15 GeV pT (extra Jl) < 15 GeV
6ET + pT (e) > 60 GeV 6ET + pT (e) > 60 GeV

LHC@7TeV
pp→ JbJle+ 6ET + X

(∼ t-channel) Eff. Theory NWA

LO[pb] 3.460+0.278
−0.403 3.505

NLO[pb] 1.609+0.303
−0.240 1.642

pp→ JbJb̄e+ 6ET + X
(∼ s-channel) Eff. Theory NWA

LO[pb] 0.1654+0.0001
−0.0010 0.1677

NLO[pb] 0.1618+0.0021
−0.0005 0.1635

Differences between effective-theory calculation and NWA ∼ 2%
⇒ consistent with expectation ∼ Γt/mt...
Similar effects found in t̄t production [Bevilacqua et al. ’10, Denner et al. ’10]

P. Falgari (ITF Utrecht) TOP2012 15 / 28



Invariant-mass distribution

LHC@7TeV
pp→ JbJle+ 6ET + X pp→ JbJb̄e+ 6ET + X
∼t−channel ∼s−channel
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large off-shell effects (up to 50%) close to the peak

non-factorizable corrections change sign around the peak
⇔ explains small effect on the total cross section
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pp → JbJle+ 6ET + X (LHC @ 7 TeV)
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off-shell and non-factorizable effects
generally small (∼ 2%) due to
averaging effect over minv

sizeable corrections (up to 40%) close
to kinematics edges, e.g. MT ∼ mt

(relevant for mt extraction)
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Threshold resummation

Single-top cross sections affected by potentially large corrections related to suppression of
soft emission near kinematical thresholds

p1p2 → t(pt)q(k) + X(pX)

σNnLO ∼ αn
s

»
lnm s4

s4

–
+

m ≤ 2n− 1 s4 = (pt + pX)2 − m2
t

partonic cross section kinematically enhanced when s4 → 0
⇒ all-order resummation of the enhanced terms is desirable!
(leads to accurate normalization of the cross section and reduced theoretical uncertainties)

State of the art for single-top is NNLL resummation (i.e. m = 2n− 1, 2n− 2, 2n− 3)

- NNLL resummation performed recently by two independent groups with different
formalims (Mellin space VS SCET) [Kidonakis ’10, ’11; Li, Wang, Zhang, Zhu ’10]

- NNLL resummed results usually re-expanded to obtain approximated fixed-order NNLO
cross section (more convenient for numerical implementation...)
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Threshold resummation

Resummation based on factorization of different relevant scales [Kidonakis, Sterman ’97].
In Mellin space:

σ̂
res

(N) =

soft-coll. radiation from external massless p.z }| {
exp

24X
i=1,2

E(Ni) + E′(N′)

35
scale dep. from PDFsz }| {

exp

24X
i=1,2

2
Z √s

µF

dµ

µ
γq/q

`
Ñi, αs(µ)

´35

× Tr

8>>>>>><>>>>>>:
H
`
αs(
√

s)
´| {z }

hard scatt.

exp

"Z √s/Ñ′

√
s

dµ

µ
Γ
†
S (αs(µ))

#
S
“
αs(
√

s/Ñ′)
”

exp

"Z √s/Ñ′

√
s

dµ

µ
ΓS (αs(µ))

#
| {z }

large-angle soft radiation

9>>>>>>=>>>>>>;

- H, S, ΓS are matrices in colour-state space!

- NNLL resummation requires recently-computed two-loop ΓS

[Neubert, Becher ’09; Kidonakis ’10]

Analogous factorization in SCET: σ ∼ f ⊗ f ⊗ Tr[H × S]⊗ J [Li, Wang, Zhang, Zhu ’10]
+ resummation in momentum space via RG evolution equations.
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Effects of threshold resummation

Results for t- and s-channel available in both formalisms
[Kidonakis ’10, ’11; Li, Wang, Zhang, Zhu ’10]
For t-channel small NNLO effects in both approaches (few percents at both Tevatron and LHC)
but large discrepancies for s-channel production...

s-channel SCET Mellin sp.

Tevatron 0.463+0.002
−0.004(+5%) 0.523+0.001

−0.005(+15%)

LHC@7 2.82+0.06
−0.07(+4%) 3.17+0.06

−0.06(+13%)

LHC@14 7.17+0.20
−0.25(+4%) 7.93+0.14

−0.14(+13%)

What’s the source of the discrepancy?

- two formalisms resum different logs

s4,Mellin = (pt + pX)2 − m2
t s4,SCET = (k + pX)2

formally equivalent for the total cross section, but power-suppressed terms can be large.

- is one parameterization better than the other? Not completely clear...

- estimate of theory uncertainty by scale variation only is probably too optimistic
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NLO/parton shower matching

One of most recent developments in single-top physics is matching of fixed-order NLO cross
section with Monte Carlo parton shower (MCPS)

NLO: dσ = dΦn

(
B(Φn)| {z }

LO

+αs
2π

h
V(Φn)| {z }

virt.

+ R(Φn+1)| {z }
real

dΦr

i)

- normalization of the cross section correct to orderO(αs)
- reduced renormalization and factorization scale dependence
- correct description of wide-angle radiation

MCPS: dσ = dΦn B(Φn)| {z }
LO

( Sudakovz }| {
∆(tm, t0) +∆(tm, t)

αs

2π
1
t

P(z)dΦr| {z }
coll.

)

- ∆(tm, t) = exp
h
−αs

2π

R tm
t dΦ

′
r

P(z′)
t′

i
- correctly describes multiple collinear emission at low pT

- can be used to generate events down to the hadronic level

...ideal solution is clearly to combine the two approaches!
Issue: how to avoid double-counting in the collinear region?

P. Falgari (ITF Utrecht) TOP2012 21 / 28



POWHEG vs MC@NLO

Two different frameworks have been tested: POWHEG and MC@NLO

POWHEG:[Nason ’04; Frixione, Nason, Oleari ’07; ...]
Modifies Sudakov factor for hardest emission such that collinear limit is preserved and
expansion in αs of matched result reproduces exact NLO

dσPOWHEG = dΦnB(Φn)

( POWHEG Sudakovz }| {
∆(Φn, kmin

T ) +∆(Φn, kT )
αs

2π

R(Φn+1)

B(Φn)
dΦr

)

B(Φn) = B(Φn) +
αs

2π

h
V(Φn) +

Z
R(Φn+1)dΦr

i
∆(Φn, kT ) = exp

"
−
αs

2π

Z
dΦr

R(Φn+1)

B(Φn)
θ(k′T − kT )

#

MC@NLO:[Frixione, Webber ’02; Frixione, Nason, Webber ’03; ....]
Subtract hardest collinear emission from exact NLO matrix element and then shower

dσMC@NLO = dΦnB(Φn)

(
∆(tm, t0) + ∆(tm, t)

αs

2π

P(z)

t
dΦr

)

+dΦndΦr

h
R(Φn+1)− RMCS(Φn+1)

i
B(Φn) = B(Φn) +

αs

2π

h
V(Φn) +

Z
RMCS(Φn+1)dΦr

i
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POWHEG vs MC@NLO

Similarities and differences between MC@NLO and POWHEG:

- in both frameworks double-counting is avoided

- exact NLO result reproduced upon expansion in αs

- in MC@NLO matching depends on the MCPS used

- positive weights in POWHEG, while small number of negative-weighted events appear
in MC@NLO (theoretically not a problem...)

How do POWHEG and MC@NLO numerically compare to each other (and to NLO)?
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POWHEG vs MC@NLO: t-channel production
5F:[Alioli, Nason, Oleari, Re ’09]; 4F:[Frederix, Re, Torrielli ’12]

A(pT) =
1
σ

Z ∞
pT

dp
(jb,2)

T
dσ

dp
(jb,2)

T
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POWHEG vs MC@NLO: s-channel production
[Alioli, Nason, Oleari, Re ’09]
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POWHEG vs MC@NLO: tW production
Unambiguous theoretical definition of tW production is difficult due to interference with t̄t
production at NLO

AWWbb =

NLO single t prod.z }| {
AWWbb,tW +

LO top-pair prod.z }| {
AWWbb,t̄t

One can still try to define the tW signal subject to a certain set of kinematical cuts.
Two schemes implemented in MC@NLO and POWHEG [Frixione, Laenen, Motylinski, Webber,
White ’08; White, Frixione, Laenen, Maltoni ’09]

Diagram removal (DR): dσNLO
tW = dφn|AWWbb,tW |2

Diagram subtraction (DS): dσNLO
tW = dφn

“
|AWWbb,tW +AWWbb,t̄t|2 −Msubt.

”
Msubt. → |AWWbb,t̄t|2 when mbW → mt
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POWHEG vs MC@NLO: tW production
[Re ’10]
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Conclusions

Theoretical understanding and modelling of single-top production in the SM
has progressed significantly in the last few years!

⇒ NLO results for the 3 production channels matched to MC parton shower
(MC@NLO and POWHEG)

⇒ (matched) results in the 4F scheme have also become available
→ precise (NLO) modelling of spectator-b jet observables

⇒ contribution of off-shell and non-factorizable corrections has been assessed
→ generally small, but can be locally large (up to 40%) near kinematical edges

⇒ some additional information on higher-order corrections might be inferred from soft
resummation, though some discrepancies have to be clarified first...

In this talk we focused only on the SM. However beyond-SM single-top production has
also been studied

⇒ anomalous couplings

⇒ associated H−t production

⇒ ...
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