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Why single-top production?

Electroweak single-top production rate competitive with
QCD-mediated #f cross section

LHC(7TeV) : ofF = 162.4pb
or+o0r = T783pb

= complementary informations on top-quark properties!

O sensitive to charged-current interactions of the top quark

= test V — A nature of the Wrb vertex

0 o o |Vyp|* — direct extraction of CKM matrix element V;,

O probes bottom PDF inside the proton
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O beside being an important signal, single-¢ production is background to Higgs production

o generally relevant to new physics searches (top anomalous couplings, 4™ generation

searches, FCNC, charged-Higgs production,...)

Almost too good to be true! Unfortunately experimental extraction of the single-top signal
much more challenging than top-pair measurements due to large background from Wj and 7
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Single-top production in the SM

b
/v/\
t-channel

s—channel
In the SM three production modes:

associated W-t production
O t-channel production (k3 < 0)
o s-channel production (k3 > 0)

o associated W production (k3 ~ M3z,)

\

t-channel production is dominant channel at both Tevatron and LHC
Tevatron

LHC (7 TeV)
B t—channel
M s—channel

| o otw

P. Falgari (ITF Utrecht)

B t—channel

M s—channel
M w

= x 9ace
TOP2012  3/28



Different production channels? %XS

Note that distinction into 3 production channels is somewhat ambiguous...

O t-channel and s-channel mix beyond LO (though no interf. at NLO due to colour)
t-channel s—channel

O More seriously tW production mixes with (much bigger) # production at NLO

S

associated tW production tt production

= from a theoretical point of view most satisfactory solution is fixing a specific physical final
state (i.e. jets+leptons+Z7) and include the full gauge-invariant set of relevant contributions
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Single-top production at NLO
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NLO QCD 0%

N

O(ay) corrections to the tree-level inclusive cross sections have been known for a while:

- t-channel [Bordes, van Eijk "95; Stelzer, Sullivan, Willenbrock *97]: AO'NLO/O'LO ~ 10%
- s-channel [Smith, Willenbrock 96]: Ac™° /o'© ~ 40 — 50%

- tW production [Zhu *02; Cao *08]: Ac™°/d™® ~ 50%

and differential cross section computed by [Harris, Lacnen, Phaf, Sullivan, Weinzierl 02; ZTOP *04]
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big differences between NLO calc. and LO showers = shows necessity of full NLO result!
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A%
NLO EW/SUSY QCD A§

NLO EW corrections and SUSY QCD corrections also available for #-channel production and
associated production [Beccaria, Carloni Calame, Mirabella, Piccinini, Renard, Verzegnassi *07/°08]

t-channel [Minv(t7j1 )]

— LO distribution
— NLO distribution
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EW corrections small (< 5%) and SUSY QCD corr. negligible (< 1% for mSUGRA SU1)
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5-flavour vs 4-flavour scheme %ﬁ@j

t-chan. NLO results first computed in the 5-flavour scheme (5F). Recently NLO results in the
4-flavour scheme (4F) have also become available [Campbell, Frederix, Maltoni, Tramontano *09].
What are the main differences between the two schemes?

T e fo—m<\
5-flavour scheme 4-flavour scheme
5F: initial » from PDF inside proton 4F: initial b-quark from gluon splitting
- large logs In y? /mj resummed by - potentially large logs not resummed

bottom PDF evolution - almost exact heavy/light currect

- exact factorization of QCD corrections factorization. More complicated
to heavy/light currents at NLO and calculation due to additional mass and
simpler calculation additional external leg.

- my, dependence and spectator b-jet only - spectator b-jet observables and m,
described from NLO onwards dependence already at LO
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NLO calculation in 4F scheme : TL§

[Campbell, Frederix, Maltoni, Tramontano *09]
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@ small differences between 4F and 5F results for total cross section
(~ 6%, compatible with theory uncertainty)

O larger differences in distributions (10 — 20%), especially for spectator b-jet
(expected, since effectively LO in SF calculation)
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INWC
Top-quark decay %ﬁ@i

Precise description of the single top pro-
duction requires consistent inclusion of

top quark decay (theoretically a delicate /\/

business due to gauge-invariance issues...)

Decay commonly treated in Narrow-Width Approximation (NWA)
1 I
st —m)+0 (4)

|p? — m? + im,T; |2 - T, my

- matrix element factorizes into production AND decay of an on-shell top (p?> = m?)

- preserves top-quark spin correlations between production and decay

- includes NLO corrections to production AND decay, but no production/decay
interferences (expect effect ~ I';/m; ~ 1% on total cross section)

- off-shell effects are completely lost (again expect effect ~ T';/m,).
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QW
Single-top production and decay at NLO ‘ &§

[Campbell, Ellis, Tramontano *04; MCFM; Cao, Schwienhorst, Yuan *04+Benitez, Brock *05]
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Decay corrections modify significantly the normalization (though shape is preserved...)
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Beyond fixed-order on-shell NLO

inclusion of off-shell effects and production/decay interferences
resummation of threshold logarithms

matching of fixed-order NLO results and MC parton showers
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QW
Production-decay interferences in single-top production %ﬁg

NWA only includes factorizable corrections to on-shell production and decay!
= no information on off-shell effects (p? # m?), non-factorizable corrections and
non-resonant (background) diagrams

< T

non-resonant

These effects are expected to be of order I';/m; ~ 1% (true for the total cross section).

However: small effect is partly due to large cancellations between virtual and real
non-factorizable corrections = off-shell and non-factorizable effects could be larger for
arbitrary kinematical distributions
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QW
Effective-theory approach to single ¢ production %XS

[PF, Giannuzzi, Mellor, Signer *10, "11]
Consider a resonant unstable top (rather than on-shell) and use the small virtuality of ¢ as an
expansion parameter, § = (p? — m?)/m; < 1

O Hard region (¢> ~ m?)
_ ‘ = factorizable corrections
(<> corrections in the NWA)

9 Soft region (¢> ~ m?6?)
= non-factorizable corrections
(< off-shell effects and
production/decay interferences)

Effective-theory expansion resums finite-width effects, includes leading non-factorizable
corrections and preserves gauge invariance
+ much simpler than full 1-loop calculation in the Complex Mass Scheme!
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pp — ./bJ/e+ET + X

[ pp — J[,JE(’+ET + X

pr(Jp) > 20 GeV
pr(hardest J;) > 20 GeV
pr(extraJg) < 15GeV
Br + pr(e) > 60 GeV

pr(extraJ;) < 15GeV
Br + pr(e) > 60 GeV

QW2

Differences between effective-theory calculation and NWA ~ 2%
= consistent with expectation ~ I';/m...
Similar effects found in #7 production [Bevilacqua et al. *10, Denner et al. *10]

o g =
Integrated cross section (m; = 172 GeV, pp;r = my /2) N
pr(Jp) > 20 GeV
pr(Jz) > 30GeV
LHC@7TeV
pp — JpieTBEr +X
(~ t-channel) Eff. Theory NWA
1+0.278
LOMpb] | 34601027 | 3505
+0.303
NLO[pb] | 1.609793% | 1.642
pp — IpJze T Er + X
(~ s-channel) Eff. Theory NWA
+0.0001
LO[pb] | 0.1654799%! | 0.1677
+0.0021
NLO[pb] | 0.1618+0:0%21 | 0.1635
TOP2012  15/28
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Invariant-mass distribution SV

LHC@7TeV

pp — JpdieTBr + X pp — Inlzet Er + X
~t—channel

~s—channel

TO
o NLO
107 NLO on-shell ——

iny [PD/GeV]
iy [Pb/GeV]

do/dm,
do/dm,

= + + + + =
7
‘

‘ T
130 150 170 190 130 150 170 190
iy, (top) [GeV] My, (top) [GeV]
0 large off-shell effects (up to 50%) close to the peak
O non-factorizable corrections change sign around the peak
<> explains small effect on the total cross section
o« = z
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pp — JpJie"Er + X (LHC @ 7 TeV)
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do/dn [pb/GeV]
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4 09

off-shell and non-factorizable effects
generally small (~ 2%) due to
averaging effect over m,

sizeable corrections (up to 40%) close
to kinematics edges, e.g. My ~ my
(relevant for m, extraction)
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Threshold resummation %‘f@

Single-top cross sections affected by potentially large corrections related to suppression of
soft emission near kinematical thresholds

pip2 = 1(p)q(k) + X (px)

N"LO o | In" sy 2 2

o ~ Qg m<2n-—1 S4:(p;+px) — m;

S4
+

partonic cross section kinematically enhanced when s4 — 0
= all-order resummation of the enhanced terms is desirable!
(leads to accurate normalization of the cross section and reduced theoretical uncertainties)

State of the art for single-top is NNLL resummation (i.e. m = 2n — 1, 2n — 2, 2n — 3)

- NNLL resummation performed recently by two independent groups with different
formalims (Mellin space VS SCET) [Kidonakis "10, *11; Li, Wang, Zhang, Zhu "10]

- NNLL resummed results usually re-expanded to obtain approximated fixed-order NNLO
cross section (more convenient for numerical implementation...)
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Threshold resummation %m =

\

Resummation based on factorization of different relevant scales [Kidonakis, Sterman *97].
In Mellin space:

soft-coll. radiation from external massless p. scale dep. from PDFs

" (N) = exp {Z E(N;) +E’(N’):| {Z 2./

\/du

i=1,2

Yq/q (N, av(#)):|

N4 Va/N
X Tr  H (a5 (V5)) exp {/ il o <af<u>>] (s (V5/R)) exp [/ & ry (av(u))]
—_——— g ® g ©

hard scatt.

large-angle soft radiation
- H, S, I's are matrices in colour-state space!

- NNLL resummation requires recently-computed two-loop I's
[Neubert, Becher *09; Kidonakis *10]

Analogous factorization in SCET: 0 ~ f ® f ® Tr[H X S] ® J [Li, Wang, Zhang, Zhu " 10]
+ resummation in momentum space via RG evolution equations.
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Effects of threshold resummation : ™

Results for 7- and s-channel available in both formalisms

[Kidonakis *10, *11; Li, Wang, Zhang, Zhu *10]

For #-channel small NNLO effects in both approaches (few percents at both Tevatron and LHC)
but large discrepancies for s-channel production...

s-channel SCET [ Mellin sp. |
Tevatron | 0.4637000;: (+5%) | 0.5237000L(+15%)
LHC@7 | 2.8270%(+4%) | 3.1770%(+13%)
LHC@14 | 7.1770%(+4%) | 7.937015(+13%)

What’s the source of the discrepancy?

- two formalisms resum different logs

Sa,Mellin = (P +px)2 —m; sa,scer = (k +px)2

formally equivalent for the total cross section, but power-suppressed terms can be large.

- is one parameterization better than the other? Not completely clear...

- estimate of theory uncertainty by scale variation only is probably too optimistic
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: A
NLO/parton shower matching Ak§

One of most recent developments in single-top physics is matching of fixed-order NLO cross
section with Monte Carlo parton shower (MCPS)

o NLO: do = d®,{ B(®,) +;i;[v(<1>n) +R(<I>n+1)d<1>,.]
—— ——  N——
LO virt. real

- normalization of the cross section correct to order O ()
- reduced renormalization and factorization scale dependence

- correct description of wide-angle radiation
Sudakov
—_—— a |
0 MCPS: do = d®, B(®,) { A(tm,t0) +A(tm, 1) — —P(2)d®,
—— 271 t

Lo coll.

_ A(l‘m,l) = exp [ Qs ffm d<1>' P(z )]
- correctly describes multlple collmear emission at low pr

- can be used to generate events down to the hadronic level

...ideal solution is clearly to combine the two approaches!
Issue: how to avoid double-counting in the collinear region?
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POWHEG vs MC@NLO : Z§

Two different frameworks have been tested: POWHEG and MC@NLO

POWHEG:[Nason ’04; Frixione, Nason, Oleari "07; ...]
Modifies Sudakov factor for hardest emission such that collinear limit is preserved and
expansion in «; of matched result reproduces exact NLO

POWHEG Sudakov

——
= min as R(Py41)
dopownEG = dPuB(®n)q A(Pp, k7)) +A(Pp, kr) — d®,
21 B(®,)
— Qg
B(®) = B(®)+ > [V(@) + [R@up)aw]
Qg R((I>n+]) /
A(DPy, kr = —— [ dP,———0(k; — k7
(®n, kr) eXP|: 27r/ r B(®n) (T T)

MC@NLO:[Frixione, Webber *02; Frixione, Nason, Webber "03; ....]
Subtract hardest collinear emission from exact NLO matrix element and then shower

— ay P(2)
doyceno = dPuB(Py){ A(tm, 10) + Altm, f)g Ta@r
+d®,d®, [R(‘i’n+l) - chs(‘i’n+1)]

B(®) = B(@)+ 5 [V(@) + [ Rucs(@agn)ae,]
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T\

A
POWHEG vs MC@NLO %"\_

Similarities and differences between MC@NLO and POWHEG:

- in both frameworks double-counting is avoided

- exact NLO result reproduced upon expansion in a
- in MC@NLO matching depends on the MCPS used

- positive weights in POWHEG, while small number of negative-weighted events appear
in MC@NLO (theoretically not a problem...)

How do POWHEG and MC@NLO numerically compare to each other (and to NLO)?
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POWHEG vs MC@NLO: t-channel production " Z§

SF:[Alioli, Nason, Oleari, Re *09]; 4F:[Frederix, Re, Torrielli *12]
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POWHEG vs MC@NLO: s-channel production

[Alioli, Nason, Oleari, Re *09]
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POWHEG vs MC@NLO: tW production %ﬂ%

Unambiguous theoretical definition of W production is difficult due to interference with 77

production at NLO
NLO single t prod. LO top-pair prod.

—_——
Awwor = Awwooow  +  Awwon,7
One can still try to define the tW signal subject to a certain set of kinematical cuts.
Two schemes implemented in MC@NLO and POWHEG [Frixione, Laenen, Motylinski, Webber,
White *08; White, Frixione, Laenen, Maltoni *09]
o Diagram removal (DR): dohy© = d,| Awwes,v|*

o Diagram subtraction (DS): dohv® = dé, <|.AWWbb,tW + Awwe 7> — Msub,,)

2
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POWHEG vs MC@NLO: tW production
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; N2
Conclusions ~

Theoretical understanding and modelling of single-top production in the SM
has progressed significantly in the last few years!

= NLO results for the 3 production channels matched to MC parton shower
(MC@NLO and POWHEG)

= (matched) results in the 4F scheme have also become available
— precise (NLO) modelling of spectator-b jet observables

= contribution of off-shell and non-factorizable corrections has been assessed
— generally small, but can be locally large (up to 40%) near kinematical edges

= some additional information on higher-order corrections might be inferred from soft
resummation, though some discrepancies have to be clarified first...

In this talk we focused only on the SM. However beyond-SM single-top production has
also been studied

= anomalous couplings
= associated H ™ t production
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