Experimental interplay between the top quark and Supersymmetry at the LHC and Tevatron

Jean-François Arguin, Université de Montréal TOP'12, Winchester, U.K. September 21, 2012

Université **m** de Montréal

Outline

- SUSY: why and how will it look like?
- Top as a (dominant) background to SUSY
- Searches for the scalar top partner
- Outlook

Disclaimer: the emphasis of the talk will be on LHC results

Why SUSY, and how will it look like?

- Supersymmetry: often considered favorite SM extension
 - Provides good dark matter candidate
 - Coupling constant unification
 - Solution to fine-tuning problem of the Higgs → need SUSY to be at the O(TeV) scale
- Generic SUSY pheno:
 - **Strongly interacting** particle production typically dominates (squark, gluinos)
 - Long decay chains: lots of highp_T jets, leptons, etc
 - LSP is stable (R-parity conserving) → large E_T^{miss}

You said signature of (b)-jets, real E_T^{miss}, lepton(s)?

Some **examples** of generic SUSY searches

Top almost always #I background!

- ttbar estimation is analysis-dependent but always has data-driven component
- General idea is to use top-enriched CR with cuts as close to SR but with little signal contamination, for example:
 - CR with additional leptons wrt signal: lost e/ μ or τ^{had} often dominates
 - Lower H_T, transverse mass or E_T^{miss} CR
- Then extrapolate to signal region(s), e.g.:
 - MC/data transfer factor
 - Using pure data info (e.g. lepton eff.)

•	Ref.	Exp.	# of lep.	b- jets?	Rank of ttbar	Ttbar uncert.
	PAS-SUS-12-016	CMS (8 TeV)	0	n	# -3 (I)	10-70%
	PAS-SUS-12-016	CMS (8 TeV)	0	у	# (I)	8-70%
	<u>PAS-SUS-12-010</u>	CMS (7 TeV)	Ι	n	#I	17-200%
	PAS-SUS-12-017	CMS (8 TeV)	2 (SS)	у	# (2)	52-167%
	<u>1206.3949</u>	CMS (7 TeV)	2 (OS)	n	#I	57-63%
	<u>ATLAS-</u> CONF-2012-109	ATLAS (8 TeV)	0	n	#I-3	24-70%
	<u>1203.6193</u>	ATLAS (7 TeV)	0	у	#I	16-35%
	<u>ATLAS-</u> CONF-2012-104	ATLAS (8 TeV)	Ι	n	#I-2	37-73%
	<u>ATLAS-</u> CONF-2012-105	ATLAS (8 TeV)	2 (SS)	n	# 2 ⁽²⁾	40%
	1208.4688	ATLAS (7 TeV)	2 (OS)	n	#I	33-100%

⁽¹⁾ Estimated together with W+jets background

4 $^{(2)}$ ttbar+W and ttbar+Z

Two <u>examples</u> of top background estimate (inclusive searches)

CMS: lepton p_T spectrum method

- Premise: <u>p</u>T of lepton from W decay is anticorrelated to neutrino
- Raw prediction corrected for: (1) W polarization, (2) lepton p_T threshold, (3) different lepton vs E_T^{miss} resol.
- Similar method $p_T(\ell \ell)$ for 2- ℓ OS channel

ATLAS: transfer factors

$$N_{
m SR} = rac{N_{
m SR}^{
m MC}}{N_{
m CR}^{
m MC}} (N_{
m CR}^{
m obs} - N_{
m CR}^{
m res}) = T_f (N_{
m CR}^{
m obs} - N_{
m CR}^{
m res})$$

- Define control regions that are (1) pure (e.g. signal-free) and (2) kinematically close to SR
- Extrapolation **transfer factor** from MC
 - MC systematics largely cancel out

TtbarV as a background to SUSY

- TtbarW and ttbarZ have very small cross-sections. NLO predictions:
 - ttbarW: 0.17^{+0.03}-0.05 pb, ttbarZ: 0.14 pb
- But becoming more important as SUSY is still escaping detection and ttbarV can produce
 - Additional leptons (SS or trilepton)
 - More E_T^{miss} from $W/Z \rightarrow \nu I/\nu \nu$
- Large background in SUSY SS dilepton searches (dominant with b-tagging)
- CMS observes evidence of ttbarV (4.67σ) and ttbarZ (3.66σ)
- ATLAS also searched for it (no evidence yet)

Unfortunately no signs yet of SUSY in inclusive searches!

		ATLAS SUSY S	Searches* - 95% CL Lower Limi	ts (Status: SU	SY 2012)
	MSUGRA/CMSSM : 0 lep + j's + E _{T.mias}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	<u>1.50 теv</u> q̃ = g̃ ma	ass	1 1 1 1
ches	MSUGRA/CMSSM : 1 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 TeV q = g mass	1	$Ldt = (1.00 - 5.8) \text{fb}^{-1}$
sear	Pheno model : 0 lep + j's + $E_{T,miss}$ Pheno model : 0 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV gritass (m(1.38 TeV q mass ($\eta < 2 \text{ lev, light } \chi_1$ $m(\tilde{g}) < 2 \text{ TeV, light } \chi^0$	s = 7, 8 TeV
sive	Gluino med. $\tilde{\chi}^{\pm}(\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{\pm})$: 1 lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-041]	900 GeV ĝ mass (m(χ ⁰ ₁) < 3	200 GeV, $m(\overline{\chi}^{\pm}) = \frac{1}{2}(m(\overline{\chi}^{0})+)$	
nclus	GMSB: 2 lep (OS) + JS + $E_{T,miss}$ GMSB: 1-2 τ + 0-1 lep + JS + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [Preliminary] L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-112]	1.24 TeV g mass (ta 1.20 TeV g mass (tar	ηβ < 15) ηβ > 20)	Preliminary
4	$GGM: \gamma\gamma + E_{\tau,miss}^{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-072]	1.07 TeV $\widetilde{\mathbf{q}}$ mass $\langle m(\overline{\mathbf{y}}^0)$	> 50 GeV)	
		10 ⁻¹	1	10)

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Hadronic / razor CM	S preliminary Leptonic
$m(\text{LSP})=0 \text{ GeV}$ $\begin{array}{c} x=0.25\\ x=0.5\\ x=0.75 \end{array} m(\text{mother})-m(\text{LSP})=200 \text{ GeV} \end{array}$	$m(mother) - m(LSP) = 200 \text{ GeV}$ $\begin{array}{c} x = 0.25 \\ x = 0.5 \\ x = 0.75 \end{array} m(LSP) = 0 \text{ GeV} \end{array}$
T1: $ ilde{g} ightarrow qq ilde{\chi}^0$, $lpha_T$	T3lh: $\tilde{g} ightarrow qq(ilde{\chi}^0_2 ightarrow l^+ l^- ilde{\chi}^0)$, OS e/μ edge
T1: ${ ilde g} o qq { ilde \chi}^0$, jets + ${ ilde H}_T$	T3lh: $\tilde{g} \rightarrow qq(\tilde{\chi}_2^0 \rightarrow l^+ l^- \tilde{\chi}^0)$, OS count $e/\mu + E_T$
T1: $ ilde{g} ightarrow qq ilde{\chi}^0$, razor	T3lh: $\tilde{g} \rightarrow qq(\tilde{\chi}^0_2 \rightarrow l^+ l^- \tilde{\chi}^0)$, OS ANN
T1: $ ilde{g} \! ightarrow \! qq ilde{\chi}^0$, M_{T2}	T5Inu: $ ilde{\chi}^{\pm} ightarrow l^{\pm} u ilde{\chi}^{0}$, SS e/μ
T2: $ ilde{q} ightarrow q ilde{\chi}^0$, $lpha_T$	TChiSlepSlep: $\tilde{\chi}_2^0 \tilde{\chi}^{\pm} \rightarrow ll l \nu \tilde{\chi}^0 \tilde{\chi}^0$, multilepton (≥ 3)
T2: $ ilde{q} ightarrow q ilde{\chi}^0$, jets + $ mathstyle{I}_T$	TChiSlepSlep: $ ilde{\chi}_2^0 ilde{\chi}^\pm o lll u ilde{\chi}_0^0 ilde{\chi}^0$, comb leptons
T2: $ ilde{q} ightarrow q ilde{\chi}^0$, razor	TChiwz: $\tilde{\chi}^{\pm} \tilde{\chi}^0_2 ightarrow WZ \tilde{\chi}^0 \tilde{\chi}^0$, comb leptons
1000 800 600 400 200 Mass s	0 200 400 600 800 1000 cales [GeV]

→Move to more specific signatures

Natural SUSY \rightarrow light 3rd generation squarks!

- Solution to fine-tuning of the Higgs is the most important motivation for SUSY to be discoverable at the LHC
- Stop (and sbottom) must 500
 be light to cancel large top corrections to Higgs mass (finetuning) → natural SUSY
 - Appear at the 1-loop level in Higgs mass correction term
 - Stop and left-handed sbottom ≤500-1000 GeV (level of finetuning is somewhat arbitrary)
 - Gluino must also be relatively light (2-loop level)

3rd generation signatures

- Two production modes:
 - Gluino-mediated
 - Direct production
- I will concentrate on final states containing top quarks (since we're at TOP'12!)

Already lots of dedicated 3rd generation squarks searches at LHC!!

Signature	$\sqrt{ m s}$ [TeV]	Latest Lumi [fb ⁻¹]	Reference
Jets+E⊤ ^{miss} + b-jets	7	4.98	SUS-12-003
α⊤ + b-jets	8	3.9	SUS-11-022, SUS-12-016
M _{T2} + b-jets	7	4.73	arXiv:1207.1798
Razor	7	4.4-4.98	SUS-11-024, SUS-12-005, SUS-12-009
2ℓ (SS) + b-jets	8	3.95	arXiv:1205.3933, SUS-12-017
I ℓ +E _T ^{miss} (sign) + b-jets	7	4.98	SUS-11-028
$I \ell + E_T^{miss} + b_jets$	7	4.96	SUS-11-027

Gluino-mediated production

11

ATLAS 0ℓ + 3 **b**-jets + E_T^{miss} (7 TeV)

Veto e/µ	Veto e/ μ , require jet p _T >50 GeV, leading jet p _T >130 GeV ;									
	Define 5 signal region:									
SR	$\frac{1}{SR} N_J E_T^{miss} m_{eff} b-tag OP$									
SR4-L	≥ 4j	>160 GeV	>500 GeV	60%						
SR4-M	≥ 4j	>160 GeV	>700 GeV	60%						
SR4-T	≥ 4j	>160 GeV	>900 GeV	70%						
SR6-L	≥ 6j	>160 GeV	>700 GeV	70%						
SR6-T \geq 6j $>$ 200 GeV $>$ 900 GeV 75										

M_{eff} for tightest SR

Limits obtained in simplified "Gtt" model: gluino up-to 0.94 TeV (neutralino up-to 300 GeV)

CMS $\alpha_T 0 \ell$ +(b-)jets (8 TeV)

ATLAS 0 ℓ + multi-jets + E_T^{miss} (8 TeV)

Event selections:

Signal region	7j55	8j55	9j55	6j80	7j80	8j80
Number of isolated leptons (e, μ)	= 0					
Jet $p_{\rm T}$	> 55 GeV > 80 GeV					
Jet η			<	2.8		
Number of jets	$\geq 7 \geq 8 \geq 9 \geq 6 \geq 7 \geq 8$			≥8		
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$	> 4 GeV ^{1/2}					

L dt = 5.8 fb⁻¹, \s=8 TeV g-g production, $\tilde{q} \rightarrow t\bar{t}\tilde{\chi}^{c}$ m_{ĭ₁} [GeV] bserved limit (±1 $\sigma_{\text{theory}}^{\text{SUSY}}$) Expected limit $(\pm 1 \sigma_{avo})$ Multi-jets plus E_miss 3 b-jets obs. (7TeV) Limits obtained in ATLAS Preliminary 500 0-lepton, ≥6-9 jets obs. (7TeV) All limits at 95% CL_s simplified "Gtt" model 400 gluino up-to 1.0 300 **TeV** (neutralino up-200 to 360 GeV) 100 900 1200 500 600 700 800 1000 1100 m_ã [GeV] ATLAS-CONF-2012-103

CMS $I l + b - jets + E_T^{miss}$ (7 TeV)

Event selections:

- \geq 3 jets p_T>40 GeV
- $H_T \ge 350 \text{ GeV}, E_T^{\text{miss}} > 100 \text{ GeV}$
- \geq I lepton p_T > 20 GeV
- Fit parameters obtained in low H_T , E_T^{miss} region and extrapolated to SR

Event yield vs H_T, E_T^{miss}

		H_{1}	$_{\Gamma} > 750$	GeV	r			H_{T}	> 1000)GeV	7	
	predicted		stat.		sys.	obs.	predicted		stat.		sys.	obs.
					E	$T_{T}^{miss} > 1$	250 GeV					2
total	145.82	\pm	9.28	\pm	23.73	137	37.54	\pm	3.73	\pm	8.85	36
0-tag	98.95	\pm	7.54	\pm	18.11	97	27.02	\pm	3.19	\pm	7.01	30
1-tag	34.62	\pm	2.76	\pm	7.54	35	7.51	\pm	1.18	\pm	2.58	5
\geq 1-tag	46.87	\pm	3.09	\pm	10.18	40	10.52	\pm	1.33	\pm	3.61	6
\geq 2-tag	12.26	\pm	1.38	\pm	2.68	5	3.01	\pm	0.61	\pm	1.03	1
					Ε	$T_{\rm T}^{\rm miss} > 1$	350 GeV					
total	53.55	±	4.54	±	11.75	44	15.49	\pm	1.73	\pm	4.94	13
0-tag	38.72	\pm	3.59	\pm	9.52	32	11.66	\pm	1.55	\pm	4.15	11
1-tag	11.51	\pm	1.03	\pm	3.5	11	2.87	\pm	0.46	\pm	1.36	2
\geq 1-tag	14.83	\pm	1.11	\pm	4.5	12	3.83	\pm	0.5	\pm	1.81	2
\geq 2-tag	3.32	\pm	0.4	\pm	1.02	1	0.96	\pm	0.2	\pm	0.46	0
					Ε	$T_{\rm T}^{\rm miss} > 1$	450 GeV					
total	19.62	±	2.05	±	6.19	20	6.58	\pm	0.86	±	2.77	7
0-tag	14.93	\pm	1.7	\pm	5.18	14	5.15	\pm	0.76	\pm	2.31	6
1-tag	3.84	\pm	0.4	\pm	1.5	5	1.14	\pm	0.2	\pm	0.67	1
\geq 1-tag	4.69	\pm	0.42	\pm	1.83	6	1.43	\pm	0.21	\pm	0.86	1
\geq 2-tag	0.85	\pm	0.12	\pm	0.33	1	0.29	\pm	0.07	\pm	0.19	0

<u>PAS-SUS-11-027</u>

Limits obtained in simplified "Gtt" model: gluino ≤ 0.9 TeV (neutralino ≤200 GeV)

A complementary analysis with the same signature extracts the bkgd using ABCD technique with H_T and E_T^{miss}/H_T : <u>PAS-SUS-11-028</u>

CMS Same-sign 2 l + b-jets (8 TeV)

Event yield vs njets, H_T, E_T^{miss}:

	SR0	SR1	SR2	SR3	SR4	SR5	SR6	SR7	SR8
No. of jets	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 3	≥ 2
No. of b-tags	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	<u>≥ 3</u>	≥ 2
Lepton charges	++/	++/	++	++/	++/	++/	++/	++/	++/
$E_{\rm T}^{\rm miss}$	> 0 GeV	> 30 GeV	> 30 GeV	> 120 GeV	> 50 GeV	> 50 GeV	> 120 GeV	> 50 GeV	> 0 GeV
$\hat{H_{\mathrm{T}}}$	> 80 GeV	> 80 GeV	> 80 GeV	> 200 GeV	> 200 GeV	> 320 GeV	> 320 GeV	> 200 GeV	> 320 GeV
Charge-flip BG	1.32 ± 0.28	1.04 ± 0.22	0.52 ± 0.11	0.05 ± 0.01	0.35 ± 0.08	0.11 ± 0.03	0.02 ± 0.01	0.01 ± 0.01	0.18 ± 0.05
Fake BG	5.89 ± 3.78	4.46 ± 2.68	1.86 ± 1.12	0.33 ± 0.36	2.46 ± 2.16	0.77 ± 0.82	0.20 ± 0.33	0.08 ± 0.52	1.36 ± 1.12
Rare SM BG	4.92 ± 2.57	$\textbf{4.44} \pm \textbf{2.32}$	$\textbf{2.95} \pm \textbf{1.59}$	1.01 ± 0.62	$\textbf{2.95} \pm \textbf{1.56}$	1.77 ± 1.03	0.71 ± 0.51	0.24 ± 0.40	$\textbf{2.24} \pm \textbf{1.27}$
Total BG	12.13 ± 4.58	9.94 ± 3.55	5.33 ± 1.95	1.39 ± 0.72	5.76 ± 2.67	2.64 ± 1.32	0.93 ± 0.61	0.33 ± 0.66	3.78 ± 1.69
Event yield	13	11	0	1	4	2	1	1	4

8 TeV: <u>PAS-SUS-12-017</u>

7 TeV paper: <u>arXiv:1205.3933</u>

ATLAS: also has 8 TeV SS+jets analysis with "Gtt"

interpretation and comparable limits: ATLAS-CONF-2012-105

ATLAS 3ℓ + jets + E_T^{miss} (7 TeV)

Event yield vs lepton flavors

	0e	1eSS	1eOS	2eSS	2eOS	3e	3ℓ
tt	0.1±0.1	0.2 ± 0.1	0.4±0.3	0.6±0.4	0.5±0.2	0.4±0.2	2.2±0.9
$t\bar{t}+V$	0.1 ± 0.1	0.1 ± 0.0	0.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	0.0 ± 0.0	0.5±0.4
Wt	0±0	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0±0	0±0
di-bosons	0.1 ± 0.1	0.0 ± 0.0	0.2 ± 0.1	0.0 ± 0.0	0.1 ± 0.1	0.2 ± 0.1	0.6±0.2
Z+jets	0±0	0±0	$0.1 {+0.2 \atop -0.1}$	0 ± 0	0±0	0 ± 0	$0.1 {+0.2 \atop -0.1}$
Total SM	0.3±0.2	0.3 ± 0.1	0.8±0.4	0.7±0.4	0.7±0.3	0.6±0.3	3.4±1.2
Data	0	0	1	0	1	0	2

ATLAS-CONF-2012-108

m_ã [GeV]

Summary of gluino-mediated limited

Direct production

CMS 0 ℓ analyses interpreted for direct stop (7 TeV)

Dedicated direct stop searches are currently in the works

ATLAS direct stop 0 l analysis (7 TeV)

Selections and background

- \geq 6 jets p_T>30GeV, leading jet p_T>130GeV, 1 or 2 b-tags
- QCD bkgd reduced with $\Delta \phi$ cut of E_T^{miss} with jets, E_T^{miss} (trk)
- Cuts on m_T(b-jet, E_T^{miss}) and m_{jjj}
- Background dominated by ttbar ℓ +jets bkgd (e.g. τ)
 - *τ*-jet veto (M_T<100 GeV)

Event yield for tw	o E _T miss	cuts
	SRA	SRB
$E_{ m T}^{ m miss}$	> 150 GeV	$> 260 { m ~GeV}$
$t\bar{t}$	9.2 ± 2.7	$2.3\ \pm\ 0.6$
$t\bar{t} + W/Z$	0.8 ± 0.2	$0.4\ \pm\ 0.1$
Single top	0.7 ± 0.4	$0.2 \ \ {}^+ \ \ {}^{0.3}_{0.2}$
$Z{+}\mathrm{jets}$	$1.3^{+1.1}_{-1.0}$	$0.9 \begin{array}{r} + & 0.8 \\ - & 0.7 \end{array}$
$W+ ext{jets}$	$1.2^{+1.4}_{-1.0}$	$0.5\ \pm\ 0.4$
Diboson	$0.1 \stackrel{+}{_{-} 0.2} \stackrel{0.2}{_{-} 0.1}$	$0.1 \begin{array}{c} + & 0.2 \\ - & 0.1 \end{array}$
Multi-jets	0.2 ± 0.2	0.02 ± 0.02
Total SM	$13.5 {}^{+ 3.7}_{- 3.6}$	$4.4 \ \ + \ \ 1.7 \ \ - \ \ 1.3$
SUSY $(m_{\tilde{t}_1}, m_{\tilde{v}_1^0}) = (400, 1)$ GeV	14.8 ± 4.0	$8.9\ \pm\ 3.1$
Data (observed)	16	4
Visible cross section [fb]	2.9 (2.5)	1.3 (1.3)

Stop excluded between 370-465 GeV for mLSP=0 and (max LSP exclusion is 50 GeV)

ATLAS direct stop I & analysis (7 TeV)

Selections and background

- Exactly one lepton
- \geq 4 jets p_T>80, 60, 40, 25 GeV, \geq 1 b-tag
- $\Delta \phi$ cut of E_T^{miss} with two lead jet > 0.8
- 130 < m_{jjj} < 205 GeV

Optimized selections:

Requirement	SR A	SR B	SR C	SR D	SR E
$E_{\rm T}^{\rm miss}$ [GeV] >	150	150	150	225	275
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \ [{\rm GeV}^{1/2}] >$	7	9	11	11	11
$m_{\rm T} \; [{ m GeV}] >$	120	120	120	130	140

Regions	SR A	SR B	SR C	SR D	SR E
$t\bar{t}$ $t\bar{t} + V$, single top V+jets, $VVMultijet$	$36 \pm 5 \\ 2.9 \pm 0.7 \\ 2.5 \pm 1.3 \\ 0.4 \pm 0.4$	27 ± 4 2.5 ± 0.6 1.7 ± 0.8 0.3 ± 0.3	11 ± 2 1.6 ± 0.3 0.4 ± 0.1 0.3 ± 0.3	$4.9 \pm 1.3 \\ 0.9 \pm 0.3 \\ 0.3 \pm 0.1 \\ 0.3 \pm 0.3$	$\begin{array}{c} 1.3\pm 0.6\\ 0.4\pm 0.1\\ 0.1\pm 0.1\\ 0.0^{+0.3}_{-0.0}\end{array}$
Total background Signal benchmark 1 (2) Observed events	42 ± 6 25.6 (8.8) 38	31 ± 4 23.0 (8.1) 25	13 ± 2 17.5 (6.9) 15	6.4 ± 1.4 13.5 (6.2) 8	1.8 ± 0.7 7.1 (4.5) 5

arXiv 1208.2590 (submitted to PRL)

Stop excluded between 230-440 GeV for mLSP=0 and (max LSP exclusion is 125 GeV)

Summary of ATLAS direct stop searches

Highlights of direct stop limit from Tevatron

- The stop has been looked for in several channels at the Tevatron
- stop \rightarrow top LSP is kinematically disfavored \rightarrow specialize in lighter stop signatures

Conclusions

- 2012 has been a special year for the interplay of top/SUSY physics as the interest for 3rd generation SUSY has increased dramatically
- A significant part of the natural phase space of SUSY has been excluded
- But the searches continues, there is still a lot of important (majority of) territory left to cover \rightarrow will largely benefit from $\sqrt{s}=8$ TeV and higher luminosity
- ttbar background is typically dominant (in 3rd generation and inclusive searches) → several complementary methods developed
- Note: I did not cover analyses looking for SUSY signatures like EW production, RPV, long-lived particles, etc

ATLAS SUSY public results

DØ New Phenomena results

Additional material

CMS $I l + b - jets + E_T^{miss}$ (7 TeV)

Table 5: Relative systematic uncertainties for the background estimation in the signal region $H_{\rm T} > 1000 \,\text{GeV}$ and $250 < E_{\rm T}^{\rm miss} < 2500 \,\text{GeV}$.

	-	µ channel		e channel		
Source	total	0-tag	\geq 1-tag	total	0-tag	\geq 1-tag
Jet and E_T^{miss} scale	6.0 %	7.5 %	7.2 %	3.1 %	5.6 %	2.1 %
W polarization (1), $\pm 10\%$	0.5 %	0.6 %	0.1 %	1.3 %	1.8 %	0.2 %
W^{-} polarization (2), $\pm 5\%$	0.3 %	0.5 %	0.1 %	0.5 %	0.5 %	0.2 %
W^+ polarization (2), $\pm 5\%$	0.1 %	0.2 %	0.1 %	0.1 %	0.1 %	0.1 %
W polarization (3), $\pm 10\%$	0.0 %	0.1 %	0.0 %	0.5 %	0.6 %	0.2 %
vary lep. eff. at low $p_{\rm T}$	0.4 %	0.3 %	0.6 %	0.6 %	1.3 %	0.7 %
vary lep. eff. in endcaps	0.2 %	0.2 %	0.1 %	0.6 %	0.8 %	0.4 %
vary pile-up	0.1 %	0.1 %	0.2 %	0.3 %	1.5 %	0.4 %
Non-leading bkg \pm 50%	0.7 %	0.4 %	0.4 %	4.0 %	3.0 %	6.2 %
dilep. contr \pm 50%	0.1 %	0.5 %	0.7 %	0.6 %	1.2 %	0.6 %
$\sigma(t\bar{t}), \pm 32\%$	1.2 %	2.3 %	1.6 %	0.7 %	1.8 %	2.0 %
σ (W+jets), $\pm 32\%$	1.3 %	2.9 %	2.3 %	2.6 %	1.6 %	2.8 %
exponent tt \pm 10%	1.6 %	0.2 %	5.3 %	1.8 %	0.3 %	4.8 %
exponent W ⁺ +jets \pm 10%	3.5 %	4.4 %	1.3 %	3.6 %	4.6 %	1.5 %
exponent W ⁻ +jets \pm 10%	0.7 %	0.8 %	0.3 %	0.9 %	1.4 %	0.9 %
α slope tī	11.0 %	2.4 %	29.3 %	14.8 %	5.0 %	34.3 %
α slope W ⁺ +jets	15.9 %	20.6 %	6.0 %	16.5 %	22.2 %	5.1 %
α slope W ⁻ +jets	4.9 %	8.2 %	2.0 %	5.6 %	8.7 %	0.5 %
Variation of Erfc.	4.1 %	4.6 %	2.9 %	3.1 %	3.2 %	2.7 %

Thursday, September 20, 12

ATLAS light stop $1-2\ell$ + b-jets: more info

Minimum invariant mass compatible with the subsystem

$$\sqrt{s_{min}^{(sub)}} = \left\{ \left(\sqrt{m_{(sub)}^2 + p_{T_{(sub)}}^2} + \sqrt{(m^{miss})^2 + (E_T^{miss})^2} \right)^2 - \left(\mathbf{p}_{T_{(sub)}} + \mathbf{p}_T^{miss} \right)^2 \right\}^{\frac{1}{2}},$$

ATLAS direct stop 2ℓ analysis (7 TeV)

Events / 5 GeV

Selections and background

- ==2 leptons and ≥2 jets
- Same-flavor leptons: Z veto and b-tag
- Signal region: mT2>120 GeV

	SF	DF
Z/γ^{\star} +jets	1.2 ± 0.5	-
$(Z/\gamma^*+$ jets scale factor)	(1.27)	-
tī	0.23 ± 0.23	0.4 ± 0.3
$(t\bar{t} \text{ scale factor})$	(1.21)	(1.10)
$t\bar{t}W + t\bar{t}Z$	0.11 ± 0.07	0.19 ± 0.12
WW	$0.01^{+0.02}_{-0.01}$	0.19 ± 0.18
WZ + ZZ	0.05 ± 0.05	0.03 ± 0.03
Wt	$0.00^{+0.17}_{-0.00}$	$0.10^{+0.18}_{-0.10}$
Fake leptons	0.00+0.14	0.00+0.09
Total SM	1.6 ± 0.6	0.9 ± 0.6
Signal, $m(\tilde{t}_1) = 300 \text{ GeV}, m(\tilde{\chi}_1^0) = 50 \text{ GeV}$	2.15	3.73
Signal, $m(\hat{T}) = 450 \text{ GeV}, m(A_0) = 100 \text{ GeV}$	3.10	5.78
Observed	1	2
95% CL limit on $\sigma_{vis}^{obs}[fb]$	0.86	1.08
95% CL limit on $\sigma_{\rm vis}^{exp}$ [fb]	0.89	0.79

ATLAS-CONF-2012-071

Stop excluded for mass ~300 GeV for mLSP=0

CMS Razor 0 l multijet+b-jets (7 TeV)

CMS has several other 0ℓ analyses interpreted in gluino-mediated stop production:

- Two more Razor analyses (7 TeV): SUS-11-024, SUS-12-005
- α_T jets+Met with \geq 0-3 b-jets: SUS-11-022 (7 TeV), SUS-12-016 (8 TeV)
- M_{T2} with b-jets (7 TeV): SUS-12-002
- b-jets+Met (7 TeV): SUS-12-003