Physics of selected

Top Quark Properties

Manuel Pérez-Victoria University of Granada & CAFPE

Winchester, September 19, 2012

Top 2012

TOP QUARK

LIGHT

HEAVY

Discovered at Fermilab in 1995, the **TOP QUARK** is as short-lived as it is massive. Weighing in at a hefty 175 GeVits lifetime, a mere 10⁻²⁴ second, is the briefest of the six quarks. Top Quarks are an enigmatic particle whose personal life is sought after by thousands of physicists.

t

Acrylic felt with gravel fill for maximum mass.

\$10.49 PLUS SHIPPING Large Yukawa: sensitive to EWSB (and new physics?)

Decays before hadronizing

Mass

- Spin
- Couplings

Outline

- General top couplings (model independent)
- Modified couplings from extra quarks
- Charge asymmetries (model independent)
- Charge asymmetries from extra bosons
- Conclusions

$$\mathcal{L} = \mathcal{L}^{(4)} + \frac{1}{\Lambda^2} \mathcal{L}^{(6)} + \dots$$

Dimension 4

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{AL} F^{AV} \\ &+ i F \mathcal{D} \mathcal{J} + h.c. \\ &+ \mathcal{J}_{ij} \mathcal{J}_{j} \mathcal{J}_{j} \mathcal{J}_{j} + h.c. \\ &+ |\mathcal{D}_{A} \mathcal{P}|^{2} - V(\mathcal{P}) \end{aligned}$

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left[W_{tb}^L \, \bar{t}_L \gamma^\mu b_L + W_{tb}^R \, \bar{t}_R \gamma^\mu b_R \right] W_\mu^+ + \text{h.c.} + \dots \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[X_t^L \, \bar{t}_L \gamma^\mu t_L + X_t^R \, \bar{t}_R \gamma^\mu t_R - X_b^L \, \bar{b}_L \gamma^\mu b_L - X_b^R \, \bar{b}_R \gamma^\mu b_R \right. \\ &\left. - 2s_W^2 \left(\frac{2}{3} \bar{t} \gamma^\mu t - \frac{1}{3} \bar{b} \gamma^\mu b \right) \right] Z_\mu + \dots \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[m_t Y_t \, \bar{t}t + m_b Y_b \, \bar{b}b \right] H \\ \end{split}$$

$$O(\Lambda^{0})$$

$$W_{tb}^{L} = V_{tb} \simeq 1$$

$$\dots \simeq 0$$

$$W_{tb}^{R} = 0$$

$$X_{t}^{L} = X_{b}^{L} = 1$$

$$X_{t}^{R} = X_{b}^{R} = 0$$

$$Y_{t} = Y_{b} = 1$$

$$\dots = 0$$

Dimension 6

I assume new physics only affects the third family

> Loop Dressed

 $\mathcal{L}^{(6)} = \alpha_1 (\phi^{\dagger} i D_{\mu} \phi) (\bar{q}_L \gamma^{\mu} q_L) + \alpha_3 (\phi^{\dagger} \tau^I i D_{\mu} \phi) (\bar{q}_L \gamma^{\mu} \tau^I q_L)$ $+ \alpha_t (\phi^{\dagger} i D_{\mu} \phi) (\bar{t}_R \gamma^{\mu} t_R) + \alpha_b (\phi^{\dagger} i D_{\mu} \phi) (\bar{b}_R \gamma^{\mu} b_R)$ $+ \alpha_{tb} (\phi^T \epsilon i D_{\mu} \phi) (\bar{t}_R \gamma^{\mu} b_R) + \alpha_{t\phi} (\phi^{\dagger} \phi) (\bar{q}_L \tilde{\phi} t_R) + \alpha_{b\phi} (\phi^{\dagger} \phi) (\bar{q}_L \phi b_R)$

Magnetic/derivative couplings

Four-quark operators

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left[W_{tb}^{L} \bar{t}_{L} \gamma^{\mu} b_{L} + W_{tb}^{R} \bar{t}_{R} \gamma^{\mu} b_{R} \right] W_{\mu}^{+} + \text{h.c.} + \dots$$

$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \left[X_{t}^{L} \bar{t}_{L} \gamma^{\mu} t_{L} + X_{t}^{R} \bar{t}_{R} \gamma^{\mu} t_{R} - X_{b}^{L} \bar{b}_{L} \gamma^{\mu} b_{L} - X_{b}^{R} \bar{b}_{R} \gamma^{\mu} b_{R} \right]$$

$$-2s_{W}^{2} \left(\frac{2}{3} \bar{t} \gamma^{\mu} t - \frac{1}{3} \bar{b} \gamma^{\mu} b \right) \right] Z_{\mu} + \dots$$

$$\mathcal{L}_{H} = -\frac{g}{2M_{W}} \left[m_{t} Y_{t} \bar{t} t + m_{b} Y_{b} \bar{b} b \right] H$$
Dimension 4 & 6
del Aguila, MPV, Santiago '00
$$\left(\mathsf{O}(\Lambda^{-2}) \left(\begin{array}{c} W_{tb}^{L} \neq V_{tb} (\not\simeq 1) & W_{tb}^{R} \neq 0 \\ \dots \neq 0 & \\ Y_{t} \neq 1, \ Y_{b} \neq 1 & \dots \neq 0 \end{array} \right) \right)$$

Observation #1

 $W^{L,R}$ non unitary in general

$$W^{L} = \left(1 + \frac{v^{2}}{\Lambda^{2}}\right)V$$

hermitian matrix

0L 0

0.2

0.4

0.6

0.8

 $|V_{tb}|^2$

Observation #1

 $W^{L,R}$ non unitary in general

$$W^{L} = \left(1 + \frac{v^{2}}{\Lambda^{2}}\right)V$$

hermitian matrix

 W_{tb}^L can be smaller, equal or greater than 1

No theoretical reason for prior $W_{tb}^L \leq 1$ except in specific models ATLAS $|V_{tb}| = 1.13^{+0.14}_{-0.13}$ No experimental reason, either

Observation #2

Gauge invariance relates t_L and b_L

Constraint from R_b at LEP:Only one $X_b^L \simeq 1$ \longrightarrow $2 \, \delta W_{tb}^L \simeq \delta X_t^L$ parameterE.g. models with custodial protection of R_b

Modified couplings to W and Z from New Physics at tree level:

New vector bosons mixing with the Z, W New quarks mixing with the SM quarks

Chiral 4th generation

In bad shape until recently...

- No theoretical motivation
- Problems with EWPT (but survive with heavy Higgs)
- Direct limits imply large (~ 3) Yukawa couplings \rightarrow perturbativity in danger

Chiral 4th generation

In bad shape until recently...

- No theoretical motivation
- Problems with EWPT (but survive with heavy Higgs)
- Direct limits imply large (~ 3) Yukawa couplings \rightarrow perturbativity in danger

Almost excluded after Higgs discovery

- Large enhancement of $gg \rightarrow H$ not observed
- Strongly disfavoured by EWPT (Higgs is light!)

Heavy vector-like quarks

- Appear in many motivated extensions of SM
- Do not change $gg \rightarrow H$ in simplest cases
- Constraint but not excluded by EWPT
- Direct limits do not require large Yukawa couplings

Only 7 relevant multiplets: $T \quad B \quad \begin{pmatrix} T \\ B \end{pmatrix} \quad \begin{pmatrix} X \\ T \end{pmatrix} \quad \begin{pmatrix} B \\ Y \end{pmatrix} \quad \begin{pmatrix} X \\ T \\ B \end{pmatrix} \quad \begin{pmatrix} T \\ B \\ Y \end{pmatrix}$

Easy to be $T \rightarrow \text{charge } 2/3$ $X \rightarrow \text{charge } 5/3$ exhaustive! $B \rightarrow \text{charge } -1/3$ $Y \rightarrow \text{charge } -4/3$

Extra quarks Modified couplings del Aguila, MPV, Santiago '00

	# par	δW^L_{tb}	δW^R_{tb}	δX_t^L	δX_b^L	δX_t^R	δX_b^R	δY_t	δY_b
T	1	↓ ↓		Ļ				Ļ	
B	1	↓			↓				↓
$\left(\begin{array}{c}T\\B\end{array}\right)$	2		1			1	1	ł	¥
$\left(\begin{array}{c} X \\ T \end{array}\right)$	1					1		ł	
$\left(\begin{array}{c}B\\Y\end{array}\right)$	1						1		¥
$ \left[\begin{array}{c} X\\ T\\ B \end{array}\right] $	1	1		↓	1			↓	↓
$\left(\begin{array}{c}T\\B\\Y\end{array}\right)$	1	1		1	↓			↓	↓

Modified top couplings

Heavy quark direct searches

Aguilar-Saavedra, Benbrik, Heinemeyer, MPV, in preparation

Decays of T (charge 2/3)

Decays of B (charge -1/3)

Direct limits on vector-like quarks

Corrections to top couplings observable at ILC

Aguilar-Saavedra, Fiolhais, Onofre '12

for B

- 611 GeV $2_{1/6}$
- 358 GeV $1_{-1/3}$, $3_{-1/3}$
- ??? $2_{-5/6}, 3_{2/3}$

still room for discoveries & indirect effects!

Top forward-backward asymmetry @ Tevatron

Inclusive FB asymmetry Parton level

High-invariant-mass FB asymmetry Parton level

BSM explanations

Grinstein, Kagan, Trott, '11

BSM explanations

$$\sigma_{t} = \sigma^{F} + \sigma^{B} = \sigma_{t}^{SM}$$
$$A_{FB} = \frac{\sigma^{F} - \sigma^{B}}{\sigma^{F} + \sigma^{B}} \neq A_{FB}^{SM}$$

Charge asymmetry @ LHC

pp symmetric... but p mostly made out of valence quarks

- On average q carries larger x than \overline{q}
- This defines, event by event, a preferred direction
- Positive FW asymmetry translates into antiquarks being more central than quarks

SM

Heavy new physics

,

Four-fermion operators (dim 6)

$$\begin{aligned}
& \mathcal{O}_{Qq}^{(8,1)} &= \left(\bar{Q}\gamma^{\mu}T^{A}Q\right)\left(\bar{q}\gamma_{\mu}T^{A}q\right), \\
& \mathcal{O}_{Qq}^{(8,3)} &= \left(\bar{Q}\gamma^{\mu}T^{A}\sigma^{I}Q\right)\left(\bar{q}\gamma_{\mu}T^{A}\sigma^{I}q\right)
\end{aligned}$$

$$\begin{aligned}
\mathfrak{O}_{tu}^{(8)} &= \left(\bar{t}\gamma^{\mu}T^{A}t\right)\left(\bar{u}\gamma_{\mu}T^{A}u\right),\\
\mathfrak{O}_{td}^{(8)} &= \left(\bar{t}\gamma^{\mu}T^{A}t\right)\left(\bar{d}\gamma_{\mu}T^{A}d\right),
\end{aligned}$$

Delaunay et al. '11 Aguilar-Saavedra, MPV '11

quadratic corrections

Tree-level exchange of new bosons

All possibilities:

Colour: $3\otimes \bar{3}=8\oplus 1$ $\mathbf{3}\otimes\mathbf{3}=\mathbf{6}\oplus\mathbf{\bar{3}}$ Isospin: $2\otimes 2=3\oplus 1$ $2\otimes 1=2$ $1 \otimes 1 = 1$ Hypercharge:

$\mathbf{\nabla}$	V	 $\mathbf{\cap}$
	I	 U

Ve	ctors	Scalars				
Label	Rep.	Label	Rep.			
\mathcal{B}_{μ}	(1,1) ₀	ϕ	$(1,2)_{-\frac{1}{2}}$			
\mathcal{W}_{μ}	$(1,3)_0$	Φ	$(8,2)_{-\frac{1}{2}}^{2}$			
\mathcal{B}^{1}_{μ}	$(1, 1)_1$	ω^{1}	$(3,1)_{-\frac{1}{3}}$			
\mathcal{G}_{μ}	(8, 1) ₀	Ω^1	$(\bar{6},1)_{-\frac{1}{3}}$			
\mathcal{H}_{μ}	$(8,3)_0$	ω^4	$(3,1)_{-\frac{4}{3}}$			
\mathcal{G}^{1}_{μ}	(8, 1) ₁	Ω^4	$(\bar{6},1)_{-\frac{4}{3}}$			
\mathcal{Q}^{1}_{μ}	$(3,2)_{\frac{1}{6}}$	σ	$(3,3)_{-\frac{1}{3}}$			
\mathcal{Q}^{5}_{μ}	$(3,2)_{-\frac{5}{6}}$	Σ	$(\bar{6},3)_{-\frac{1}{3}}$			
\mathcal{Y}^{1}_{μ}	$(\bar{6},2)_{\frac{1}{6}}$		U			
$\mathcal{Y}^{\sf 5}_{\mu}$	$(\bar{6},2)_{-rac{5}{6}}$					

AFB vs Ac: simple models

Model predictions from Aguilar-Saavedra, MPV '11

Aguilar-Saavedra, Juste '12

Collider-independent charge asymmetries

$$A_{FB} = A_u F_u + A_d F_d$$
$$A_C = A_u F_u D_u + A_d F_d D_d$$

 $A_u \rightarrow \text{asymmetry in } \bar{u}u \rightarrow \bar{t}t$ $A_d \rightarrow \text{asymmetry in } \bar{d}d \rightarrow \bar{t}t$

Collider-independent charge asymmetries

SM predictions

Aguilar-Saavedra, Bernreuther, Si in preparation

Tevatron

	$\mu = m_t$		$\mu = 2m_t$		$\mu = m_t/2$	
$m_{t\bar{t}}$	A_{u}	A_d	A_{n}	Ad	A_{u}	A_d
< 400	0.0575	0.0393	0.0542	0.0357	0.0612	0.0435
400 - 450	0.0957	0.0662	0.0906	0.0603	0.1023	0.0732
450 - 500	0.1230	0.0858	0.1160	0.0787	0.1311	0.0947
500 - 550	0.1447	0.1018	0.1368	0.0922	0.1538	0.1129
550 - 600	0.1645	0.1154	0.1557	0.1055	0.1760	0.1276

Consistent

	$\mu=m_t$		$\mu =$	$2m_t$	$\mu=m_t/2$		
$m_{t\bar{t}}$	A_{u}	A_d	A_{u}	A_d	A_{u}	A_d	
< 400	0.0625	0.0611	0.0579	0.0563	0.0667	0.0682	
400 - 450	0.0845	0.0591	0.0809	0.0530	0.0929	0.0633	
450 - 500	0.1165	0.0636	0.1098	0.0613	0.1201	0.0779	
500 - 550	0.1158	0.0556	0.1094	0.0421	0.1212	0.0595	
550 - 600	0.1459	0.1009	0.1379	0.1017	0.1577	0.1076	
600 - 650	0.1534	0.1041	0.1488	0.0938	0.1617	0.1165	
650 - 700	0.1646	0.1030	0.1531	0.0850	0.1668	0.1143	
700 - 750	0.1706	0.1246	0.1664	0.1198	0.1799	0.1162	
750 - 800	0.1818	0.1247	0.1772	0.1169	0.2074	0.1451	

LHC 7

Impact of tail constraint (< 3 x SM)

Aguilar-Saavedra, MPV '11

New measurement of tail

(central value smaller than SM)

Relative differential cross section vs invariant mass

Impact of tight tail constraint (< 1.5 x SM)

Aguilar-Saavedra, MPV '11 (estimate; new dedicated analysis necessary)

My favourite surviving explanation: light octets

• s channel, but hidden if resonance broad Barceló et al. '11 or below $t\bar{t}$ threshold Aguilar-Saavedra, MPV '11

• If very light, small couplings Tavares, Schmaltz '11

• If very light, can have universal couplings and avoid flavour problems Tavares, Schmaltz '11

• Can accomodate $A_{FB} > 0$, $A_C \lesssim 0$ Drobnak, Kamenik, Zupan '12

Light octets may give rise to peculiar profiles Aguilar-Saavedra, MPV '11

flat

Conclusions

- Top quark might have non-standard couplings
- Deviations in couplings related to direct searches of new particles
- Model-independent correlation of Ztt and Wtb
- Model-dependent correlation with Htt as well
- Tevatron FB asymmetry still alive, but very constrained by LHC
- New tools can be used to distinguish new physics from experimental issues