Top 2012

Winchester September 17-21, 2012

Physics of the interplay between the top quark and the Higgs

José Santiago

CAFPE

Física Teórica y del Cosmos Universidad de Granada

Outline

- Top-Higgs interplay in the Standard Model
- Which story is the Higgs telling?
- What if the $\gamma\gamma$ excess is real?
- Higgs-top interplay in composite Higgs models
- Testing Higgs-top interplay in CHM
- $Ht\bar{t}$ in composite Higgs models
- Summary

Top-Higgs interplay in the SM

• Higgs mass predicted in the SM from EWPO (very sensitive to the top mass) Erler, 1209.3324

$$m_H = 102 \pm \frac{24}{20} \text{ GeV}$$
 $m_t = 173.2 \pm 1.0 \text{ GeV}$ $m_H = 81 \pm \frac{32}{24} \text{ GeV}$ $m_t = 169.6 \pm 3.5 \text{ GeV}$

Very good agreement with direct searches

Top-Higgs interplay in the SM

 Higgs mass predicted in the SM from EWPO (very sensitive to the top mass)

• The top quark is crucial in Higgs production ...

and decay

Which story is the Higgs telling?

Latest results on Higgs searches

- $m_H \approx 125 \text{ GeV}$
- VV and bb in good agreement with SM
- $\gamma\gamma\sim 1.5-2$ too large

• Can we double $\Gamma_{H\to\gamma\gamma}$ without changing the production cross section or $\Gamma_{H\to VV,\bar ff}$?

• New contribution from uncolored particles running in the loop (or else $gg \to H$ modified)

Can be done but it's strongly constrained!

- Can we double $\Gamma_{H\to\gamma\gamma}$ without changing the production cross section or $\Gamma_{H\to VV,\bar ff}$?
 - New contribution from uncolored particles running in the loop (or else $gg \to H$ modified)
 - Need very light (~ few hundred GeV) particles with large Yukawa couplings
 - Can render λ negative through RGE or threshold effects or be excluded by direct searches Arkani-Hamed, Blum, D'Agnolo, Fan 1207.4482; Reece 1208.1765

$$\frac{d\lambda}{dt} = -\frac{3}{8\pi^2}y^4 + \dots$$

- Can we double $\Gamma_{H\to\gamma\gamma}$ without changing the production cross section or $\Gamma_{H\to VV,\bar ff}$?
 - We can also do it with just tree level corrections

$$g_{HVV} = a \times g_{HVV}^{\rm SM}$$

$$g_{Hff} = c \times g_{Hff}^{SM}$$

Espinosa, Grojean, Muhlleitner, Trott 1207.1717 see also Azatov, Contino, Galloway 1206.3171; Corbett, Eboli, González-Fraile, González-García 1207.1344; Giardino, Kannike, Raidal, Strumia 1207.1347; Montull, Riva 1207.1716; Carmi, Falkowski, Kuflik, Volansky, Zupan 1207.1718

- Can we double $\Gamma_{H\to\gamma\gamma}$ without changing the production cross section or $\Gamma_{H\to VV,\bar ff}$?
 - We can also do it with just tree level corrections

Can be realized in composite Higgs models with partial compositeness!

Montull, Riva 1207.1716; see also Pomarol, Riva 1205.6434; Chala, Grojean, Santiago in progress

 How do we avoid new loop corrections and Higgs quartic instabilities?

Composite Higgs and Partial Compositeness

Composite Higgs

Georgi, Kaplan, et al. 84-85

 $\begin{array}{c} q_L \\ \\ \text{mass protected} \end{array}$

Higgs mass protected from UV by its finite size

It is a pNGB of a global symmetry of the strong sector (little hierarchy)

 t_R

H

Many properties fixed by the symmetries!

Partial Compositeness

Kaplan 91

Contino, Kramer, Son, Sundrum 06

SM: elementary states external to the strong sector

Linear coupling: degree of compositeness

Large top mass: top is also composite!

Light Higgs: top partners below the TeV scale

Top partners: New vector-like quarks related to the top by the symmetries of the strong sector

Pomarol, Riva 1205.6434 see also Matsedonskyi, Panico, Wulzer 1204.6333; Redi, Tesi 1205.0232; Marzocca, Serone, Shu 1205.0770

- Light Higgs: top partners below the TeV scale
- Why no large loop corrections?
 - Top Yukawa receives two types of corrections:
 - From non-linear Higgs effects: fixed by symmetry
 - From mixing with top partners: spectrum dependent
- In some cases, symmetry guarantees that only the first one contributes to $H \to gg, \gamma\gamma$ Azatov, Galloway 1110.5646

- Light Higgs: top partners below the TeV scale
- Why no large loop corrections?
 - Top Yukawa receives two types of corrections:
 - From non-linear Higgs effects: fixed by symmetry
 - From mixing with top partners: spectrum dependent
- Why no Higgs quartic instability?
 - RGE of λ subleading in the large N expansion
 - It takes longer to become negative, reaching the natural cut-off of the theory (strong coupling) before becoming unstable

- Interesting situation
 - $\lambda_t \sim -1$ as effectively measured from $H \to gg, \gamma\gamma$ and determined purely from symmetry
 - Real λ_t can be quite different from -1, with the differences giving information on the spectrum

It is crucial to measure the top Yukawa coupling from tree level processes!

Measuring the top Yukawa coupling

- pp o Hqt: sensitive to the sign of λ_t
 - Very difficult at the LHC Farina, Grojean, Maltoni, Salvioni, Thamm, in progress

- $pp \to Ht\bar{t}$: measurement of the magnitude
 - Difficult but not impossible at LHC Spannowsky 0910.5472
 - Possible contamination from new physics

Finding hints elsewhere

- Can we test the mechanism elsewhere?
 - Look for the top partners themselves in pair or single production

• Excellent reach if light, can be tested up to $M \sim 1.5 \; {
m TeV}$

See also Aguilar-Saavedra 0907.3155; Dissertori, Furlan, Moorgat, Nef 1005.4414

Finding hints elsewhere

- Can we test the mechanism elsewhere?
 - Look for the top partners themselves in pair or single production
 - Look for anomalous (gauge) top couplings
 - Top partners also induce corrections to top gauge COUPlings Aguila, Pérez-Victoria, Santiago ph/0007316
 - Look for new Higgs production mechanisms:

$$pp o G o ar tT o Har tt$$
 Carmona, Chala, Santiago 1205.2378 Aguila et al '89-90; Aguilar-Saavedra ph/0603200; Kribs, Martin, Roy 1012.2866; Azatov et al 1204.0455 Vignaroli 1207.0830

Carmona, Chala, Santiago 1205.2378

- Light composite Higgs implies light top partners
- Partial compositeness implies color octet vector resonances G (heavy gluons)
- New $Ht\bar{t}$ production mechanism: Single production of top partners through s-channel exchange of G in association with a t with decay into H t

$$pp \to G \to T\bar{t} \to Ht\bar{t}$$

Reasonable x-section + distinctive kinematics

Carmona, Chala, Santiago 1205.2378

- Simulation
 - Madgraph/ALPGEN + Pythia + Delphes
 - Backgrounds considered

Process	LHC7	LHC8	LHC14
	σ [pb]	σ [pb]	σ [pb]
$t\bar{t}$ +0-4 jets (semileptonic+leptonic)	47.9	70.47	268.55
$tar{t}bar{b}$	0.09	0.15	0.85
Z+1-4 jets (leptonic)	530.5	641	1423
WW + 0-2 jets (semileptonic+leptonic)	15	22.6	49
$W+1-2 \text{ jets } (p_T > 150 \text{ GeV, leptonic})$	_	_	84.9
W+1-4 jets (leptonic)	5133	6489	_

Statistical estimator

$$S(s,b) = \sqrt{2 \times \left[(s+b) \ln \left(1 + \frac{s}{b} \right) - s \right]}$$

Carmona, Chala, Santiago 1205.2378

- Strategy
 - Use the leading $H \to b \bar b$ decay and semileptonic top decays

$$pp \to G \to T\bar{t} + \bar{T}t \to Ht\bar{t} \to 4b + 2j + l + \cancel{E}_T$$

- Use b-tags and S_T as main discriminating variables
- Use boosted top and Higgs techniques for larger masses

Carmona, Chala, Santiago 1205.2378

Results

Summary

- Higgs and top are intimately related in the SM and beyond
- Current Higgs results could be explained by anomalous top Yukawa coupling
- This scenario can be realized and tested in composite Higgs models
- $Ht\bar{t}$ is a crucial test of the scenario:
 - SM motivated cuts give information on $\,\lambda_t$
 - CHM motivated cuts give information on the spectrum