

Object definition and performance at CMS

Carmen Diez Pardos for the CMS collaboration

DESY

Outline

[Introduction](#page-2-0)

- 2 [Leptons](#page-6-0)
	- [Muons and electrons](#page-6-0)
	- **•** [Taus](#page-11-0)
- 3 [Jets](#page-14-0)
	- [B-tagging](#page-21-0)
- 5 [Mising transverse energy](#page-27-0)
- 6 [Summary and outlook](#page-31-0)
	- **[Documentation](#page-32-0)**

Introduction

- All physics objects are essential for top physics: leptons, (b)-jets, MET Describe energy scale, efficiency, fake rates
- **•** Top analyses rely on reconstruction of objects using all subdetectors
- **Q.** Results shown from 7 TeV and 8 TeV data
- Large increase of PU, about 30% increase in PU in 2012 Run A compared to end of 2011 data-taking
	- Pile-up corrections for jets and missing energy
	- Impact on isolation

Top quarks

Particle Flow Algorithm

- **PF combines information from** all-subdetectors prior to jet clustering, MET calculation etc. to reconstruct particles (hadrons, photons, mu/e)
- From these particles composite objects (Jets, taus, MET) are reconstructed
- Big improvement in energy resolution and tau identification
- **Contribution from different** detector components accessible
- Widely used in top analysis

Leptons: muons and electrons

- **•** Impact on top: efficiency, QCD estimate & modeling
- Trigger largely based on leptons
- Excellent ID capabilities
	- \Diamond Use redundancy of sub-detectors for muons
	- \circ Shower shapes, H/E, conversion vetoes for electrons
- Generally speaking, muons have fewer fakes than electrons, which leads to a smaller QCD fraction
- Charge mis-identification: μ ($p < 1$ TeV) sub-percent level, electrons at percent level

Muon reconstruction efficiency

Combine different algorithms to reach a robust and efficient μ reconstruction, using information from silicon tracking and muon systems

- **•** Measure lepton identification efficiencies with the Tag and Probe method
- Select pairs from Z resonances (covering same kinematic phase space as muons from top decays)
	- Tag lepton: Strict selection requirements
	- Probe lepton: Relaxed selection, not bias
- **•** Subtract combinatorial background with simultaneous fit for the probes passing and failing the selection requirements

Electron reconstruction efficiency

- Electron reconstruction: combination of tracker and calorimeter information
- **•** Efficiency also measured with T&P method
- Good description data/MC, very high efficiency reco/Id

In the analysis MC yields corrected with SF(data/MC) \sim 1

C. Diez Pardos (DESY) TOP2012, 17 September 2012 8/34

Isolation efficiency

- Using particle-based isolation.
- Cut on relative isolation in a cone with typically $\Delta R = 0.3$ relIso $=\frac{p_{CH}+p_{NH}+p_{\gamma}}{p_T}$.
- Isolation requirements also included in lepton triggers.
- Pile up contribution:
- Negligible for charged hadrons (vertexing)
- Developed methods to correct for neutral particle candidates: Use global average energy density (ρ)
- SF data/MC applied to analysis \sim 1.

Lepton momentum scale and resolution

• Muons

- Measurement dominated by silicon tracker for $p_T < 200$ GeV.
- Low and medium ranges ([0-100] GeV) with di- μ resonances: resolution <1-2 % barrel, $<$ 6% endcap

C. Diez Pardos (DESY) TOP2012, 17 September 2012 10/34

Taus

 \bullet 2/3 decays hadronically (into one or three charged mesons, predominantly π , a ν and potentially additional neutral π .)

Impact on top $(\tau+$ jets, dilepton channel with τ decays): efficiency, qcd/fake estimate, modeling

Challenge: reject hadronic jets (larger production rate) faking tau candidates

- **•** Using hadrons plus strip algorithm (takes into account the broadening in ϕ of calorimeter signatures due to early showering photons.)
- • Candidates are required to satisfy isolation based identification using charged hadrons and photons within cone around the τ candidate

Taus: Efficiency, energy scale

Efficiency measured using tag and probe on $Z \rightarrow \tau \tau \rightarrow \mu \tau_{had}$, estimated ∼45%

 \bullet Energy scale \sim 1, with measured uncertainty better than 3%

[Leptons](#page-13-0) [Taus](#page-13-0)

Taus: Miss-identification rate

- Major sources of jets that can fake hadronic taus: QCD, W+jets
- \bullet Discrimination against electrons using MVA with efficiency $\langle 2\%$ (estimated with $Z \rightarrow ee$)
- \bullet Discrimination against muons with efficiency $< 0.2\%$
- Charged Misid. Rate 1%-2% \bullet

Jets in CMS

PFJets, reconstructed with anti-kT algorithm (Cone 0.5) Well calibrated jets are important for any analysis

- **•** Factorized approach for jet calibration in CMS
	- 1. Offset corrections for pile-up and electronic noise
	- 2. Corrections for detector calibration and reconstruction efficiencies from MC
	- 3. relative residual corrections for η dependence (data based)
	- 4. residual corrections to absolute $p_{\mathcal{T}}$ (data based) Impact on mass measurement,

cross-section, on total syst. uncertainty JES uncertainty $\langle 2\%$ for most of the p_T range, JER about 10%

C. Diez Pardos (DESY) TOP2012, 17 September 2012 14/34

[Jets](#page-14-0)

[Jets](#page-15-0)

Pile Up Corrections

 \Diamond Pile Up: Corrections based on two methods, Average Offset correction and Jet Area Correction

The pile-up dependence on N_{PV} is very linear for data, while MC requires a small quadratic correction.

Jet Energy Corrections for detector effects

 \Diamond η and $p_{\mathcal{T}}$ corrections derived from QCD MC sample

[Jets](#page-16-0)

 \diamond Reconstructed jet $\rho_{\mathcal{T}}$ corrected to generator jet $(\frac{\rho_{\mathcal{T}}^{reco}}{\rho_{\mathcal{T}}^{sen}})$ T

Closure test at unity over whole kinematic range

C. Diez Pardos (DESY) TOP2012, 17 September 2012 16/34

Residual Jet Energy Corrections

- \Diamond Data-driven corrections for η dependence:
	- Derived from dijet balance
	- Make the jet response flat vs eta. Essentially, the uniformity in pseudorapidity is achieved by correcting a jet in arbitrary η relative to a jet in the central region $(|n| < 1.3)$

O Detector modeling accurate: η -dependent residuals for all jets types below 2.5% at $|\eta| < 2.4$

• Slightly larger residual in end caps outside tracker coverage.

C. Diez Pardos (DESY) TOP2012, 17 September 2012 17/34

[Jets](#page-17-0)

[Jets](#page-18-0)

Residual Jet Energy Corrections

- Make the jet response flat vs p_T
- The residual correction required for absolute scale is of the order of 1.5%
- No significant p_T dependence

JEC uncertainties

- Uncertainties comparable to 2010, 2011.
- Pile-up uncertainties increasing due to higher average pile-up.
CMS preliminary L = 1.6 fb¹ \sqrt{s} = 8 TeV cMS preliminary L = 1.6 fb¹

• The contribution of different uncertainty sources depends on p_T and η • Total uncertainty of the jet energy scale is close to 1% for $|\eta|$ < 2.4 C. Diez Pardos (DESY) TOP2012, 17 September 2012 19/34

[Jets](#page-19-0)

Jet Resolution Measurement

Dijet Asymmetry method ($\frac{p_{\tau,1}-p_{\tau,2}}{p_{\tau,1}+p_{\tau,2}}$)

Balance method on $\gamma+{\rm jets}~({p_{\tau,jet}\over p_{\tau,\gamma}})$

[Jets](#page-20-0)

JER factor varies between 15% to 10% with increasing p_T

C. Diez Pardos (DESY) TOP2012, 17 September 2012 20/34

[B-tagging](#page-21-0)

b-tagging

- Fundamental to identify jets from hadronization of heavy flavour quarks
- Main feature to identify b-jets from the light-flavour jets: large lifetime (∼1.5 ps) and decay length (1.8mm)
	- Different algorithms used
		- Based on track impact parameter significance
		- Secondary vertex
- Impact on top: amount and uncertainty of light flavour background for all tagged analysis

b-tagging identification

- 1. Using impact parameter calculated in 3D
- 2. Presence of secondary vertex and kinematic variables associated to it (flight distance and direction, properties of the system of associated tracks - multiplicity, energy, mass)

 $CMS 2011, \sqrt{s} = 7 TeV$

SV / 0.8 ³ 10

⁴ 10

² 10

Data/MC

1

Data

0 0.2 0.4 0.6 0.8 1

1

b-tagging performance

- Performance of the different algorithms: c-jet efficiencies vs b-jet efficiency
- Usage in top analysis:
	- first \sim fb⁻¹ 2011 data: Track counting

udsg-jet efficiency -2 10

 10^{-1} \leftarrow

CMS Simulation, \sqrt{s} **= 7 TeV TCHP PU = 0 PU = 12 to 16**

 10^{-4}

 10^{-3}

Full 2011 data and 2012: Combined SV

3D IP significance

-30 -20 -10 0 10 20 30

 Impact on running conditions: Alignment, increased track densities due to pile-up

b-tagging Efficiency

- **•** Several methods using multijets events
- Dijets with a muon jet using the kinematic properties of muon jets $(p_T^{\textit{rel}}, \text{ IP})$: They rely on fitting the variabes with simulated spectra for the b signal and c+light background
- **Lifetime tagger with muon jet and inclusive jet sample**

- Individual results combined for the optimal measurement of data/MC SF for $30 < p_T < 670$ GeV.
- \Diamond Combination based on a weighted mean of the scale factors in each jet p_T bin
- \Diamond Top analyses apply those SF to correct MC yields

[B-tagging](#page-25-0)

b-tagging Efficiency

- Various methods using $t\bar{t}$ events in the lepton+jets and dilepton channels, provide inclusive results
- **•** Suited for measurements other than the cross section
- **E** Event selection follows the selection for $t\bar{t}$ cross section measurements (without b-tagging requirements)

b-tagging Mis-tag rate

- **•** Use tracks with negative impact parameter or secondary vertices with negative decay length to measure the negative tag rate
- **•** Evaluate for different jet triggers and use average

Missing Transverse Energy

- Events are reconstructed with the Particle Flow technique: MET computed as the negative vectorial sum of all particles candidates, corrected for JES
- **•** Impact on top: QCD estimate & modeling, mass measurement Challenging variable

Easy to obtain fake MET due to large shower fluctuations

Non linear calorimeter response

Instrumental noise, poorly instrumented area

Use $Z \rightarrow \mu\mu$ to study MET resolution

- Clean final state, small background contributions
- No intrinsic MET, only resolution effects

l e

MET Scale and resolution

8 TeV the continues the contin-CMS preliminary, \sqrt{s} =7 TeV MC RMS: 13.65 + 0.013 u_1 MC RMS : 13.65 + 0.013 **IIIIIII** Syst. uncertainties 7 TeV $10¹$ $10⁴$ 10 $10[°]$

 u_{\shortparallel}^0 [GeV]

CMS preliminary. \sqrt{s} =8 TeV L = 0.7 fb⁻¹

 $Mean = 0.03$

 $2440 - 14.20$

 $tan = 0.08 \pm 0.15$

 $MS = 14.60 \pm 0.67$

Run A Data 2012

exp. $Z \rightarrow \mu^* \mu^*$

Sys. Uncertainty

 $-100-80-60-40-20$ 0

20 40 60 80

exp. Background

- **O** The mean of the distribution of u_{\parallel}/q_T is a measure response
- The RMS widths of $u_{\parallel} q_{\perp}$ and u_{\perp} are used to measure resolution

MET distributions agree well between data and simulation

C. Diez Pardos (DESY) TOP2012, 17 September 2012 28/34

 -200

 -150 -100

 u_1 [GeV]

Missing Energy Resolution

• MET resolution for different N_{PV} is fitted with:

$$
\sigma_{\text{tot}} = \sqrt{c^2 + \frac{N_{PV}}{0.7} \cdot \sigma_{PU}}
$$

- c: average resolution without PU
- \bullet σ_{PI} degradation in resolution caused by PU
- **•** Good agreement data-simulation
- Improved resolution in 2012
- PU introduces an additional smearing of ∼3 GeV

Missing Energy Response

- corrected MET
	- jet corrections are applied
	- MET is recalculated
- MET response in $Z \rightarrow \mu\mu$ is close to unity
	- Independent of PU multiplicity of the event

C. Diez Pardos (DESY) TOP2012, 17 September 2012 30/34

Summary

- Great performance of the object identification both at 7 and 8 TeV for precision measurement of top quark properties
- The agreement between data-simulation is remarkable
- CMS is performing well in this scenario, adapting to the increasing luminosity
	- PU dependent correction
	- **e** customize isolation
- So far, top analyses show no significant dependence on the changing conditions.
- All CMS public results available from: <https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults>

Documentation

- \circ Muons: CMS MUO-10-004
- Electrons: CMS-PAS-EGM-10-004, CMS-PAS-EGM-10-001
- \circ Taus: CMS-PAS-TAU-11-001
- Jets: CMS DP-12-012, 2011 JINST 6 P11002
- \circ b-tagging: CMS PAS-BTV-11-003, PAS-BTV-11-004
- MET: CMS DP-12-003, CMS DP-12-013

BACK UP

Trigger efficiency

