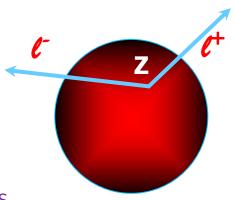
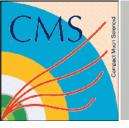


High p_T Physics at LHC Frankfurt 2012

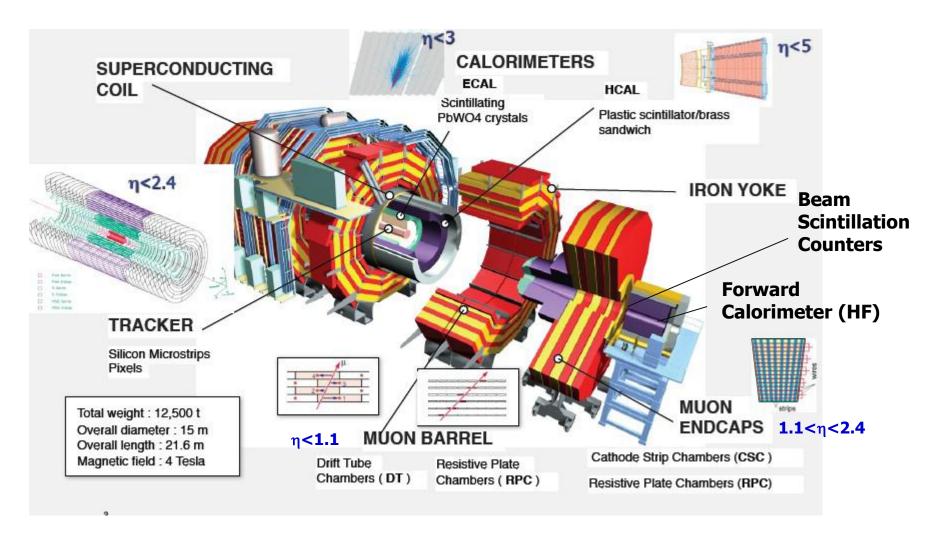

v Tecnológicas

EWK Probes in HI collisions

- LHC PbPb collisions energy and luminosity allow EWK bosons (W, Z) production in sizeable quantities for first time in Heavy Ion collisions.
- **EWK** bosons (weak interaction) predicted not to be modified by nuclear medium \rightarrow scale with number of binary collisions \rightarrow $R_{AA} = 1/T_{AA} N(PbPb)/\sigma(pp) \cong 1$??
- * Z,W are created before QGP formation and decay in the medium.
- The study of their leptonic decay is interesting as:
 - leptons lose negligible energy in the medium (be it partonic or hadronic)
 - > experimentally clean to detect and measure.
- Can the Z,W bosons become the new and cleaner reference (together with direct photons) in HI collisions, providing information on the initial system?
- ❖ Study as a function of event centrality → constrain nuclear (neutron) PDFs

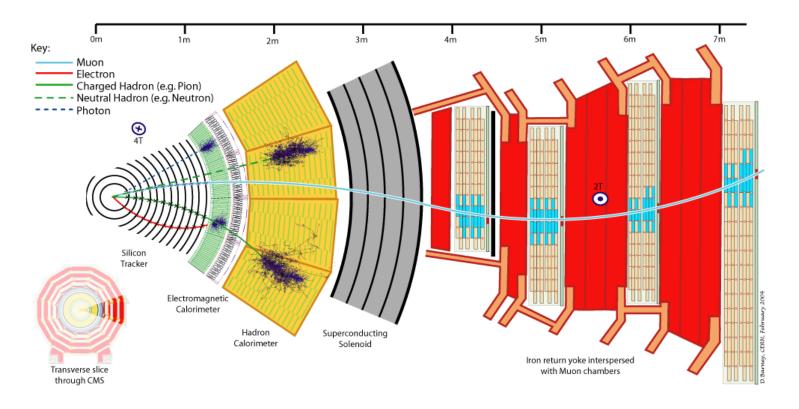


Contents



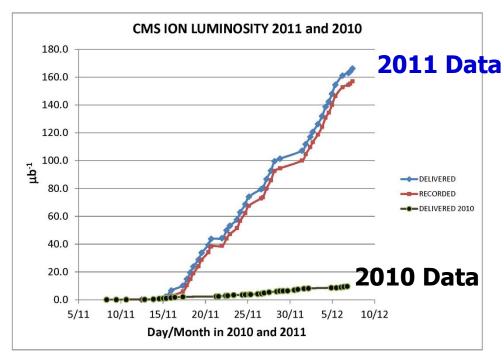
- Motivation
- CMS detector (Muon detection)
- Z bosons:
 - ightharpoonup $Z \rightarrow \mu^+ \mu^-$
 - > Z→e+e-
- W bosons:
 - \rightarrow W[±] \rightarrow μ [±] ν
- Conclusions

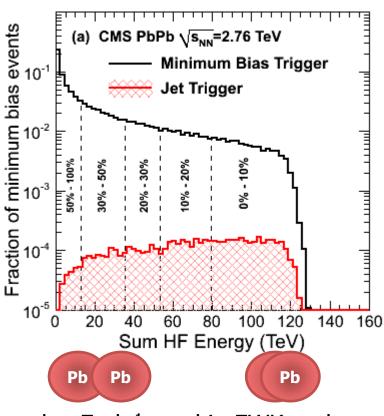
CMS Detector





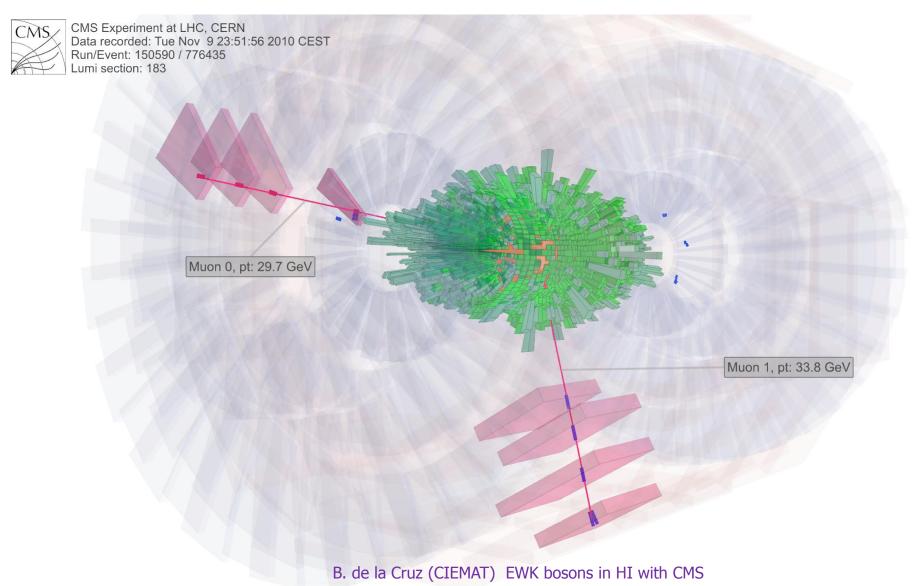
Muon Detection


- **Excellent Muon Triggering and Identification (Muon Chambers)**
 - ❖ Muon reconstruction performance (p_T resolution ~1-2 %) (Si-Tracker) Inner tracking in HI optimized for high density track environment

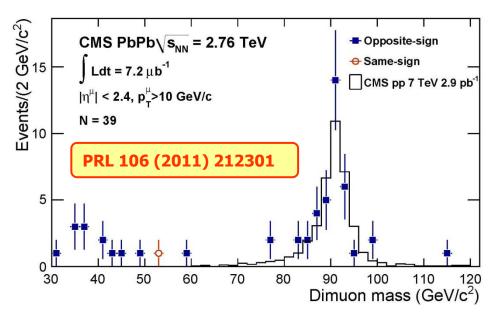


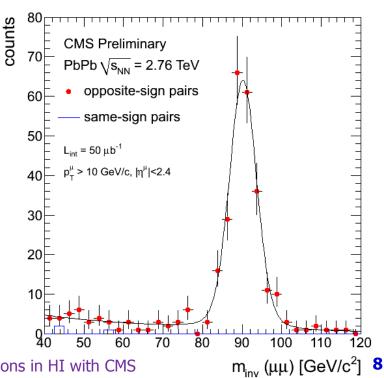
CMS PbPb Data

2010 PbPb data ($\sqrt{s_{NN}}$ =2.76 TeV): 8.7 µb⁻¹ delivered; ~7 µb⁻¹ used in EWK probes analysis.


2011 pp data (\sqrt{s} =2.76 TeV): 241 nb⁻¹ delivered; 231 nb⁻¹ used for reference (statistics are comparable)

2011 PbPb data ($\sqrt{s_{NN}}$ =2.76 TeV) :~160 µb⁻¹ delivered \rightarrow >x20 increase on statistics!!

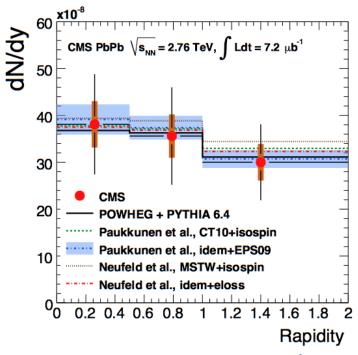

$Z\rightarrow \mu^+\mu^-$

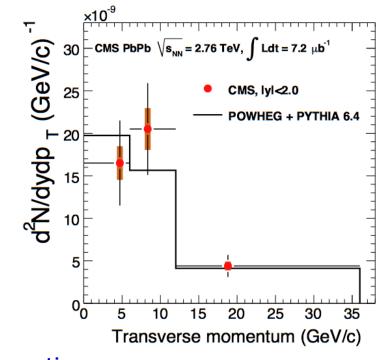


- Clean Z signal with very low background
- Z mass peak in PbPb agrees with pp data (mass resolution close to pp one)
 - First look at 2011 data
 - Beautiful increase of statistics

2010 Data: LHC first measurement of Z production in Heavy Ion collisions

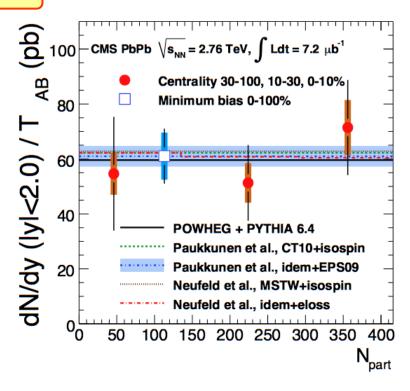
Selection: opposite sign high p_T dimuon events $(p_T^{\mu} > 10 \text{ GeV/c})$




CMS pound sound treatment

$Z \rightarrow \mu^+ \mu^-$

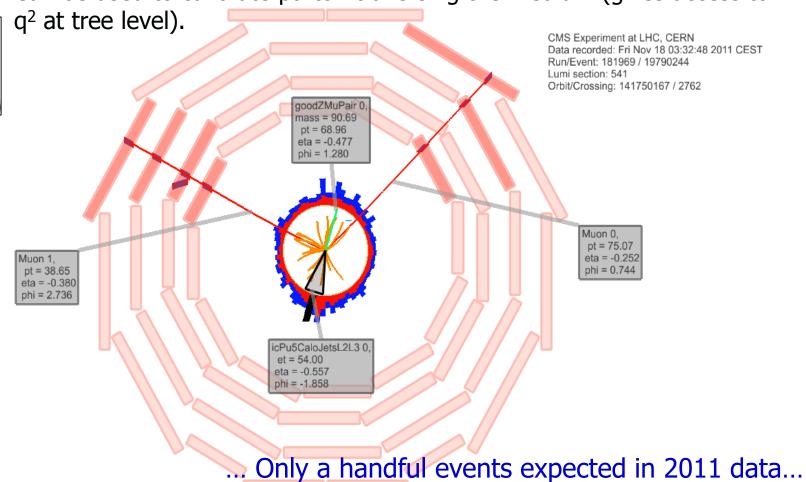
PRL 106 (2011) 212301


- Uncertainties: 16% statistical, 14% systematic
- \diamond Z bosons produced in $q\overline{q}$ interactions \longrightarrow isospin effects not very relevant
- Kinematic distributions are consistent with pQCD NLO (Powheg) calculations and PbPb predictions including small nuclear effects (shadowing, isospin, energy loss)
- \diamond Z p_T dependence consistent with that from pp interactions (& Powheg).


$Z\rightarrow \mu^+\mu^-$

PRL 106 (2011) 212301

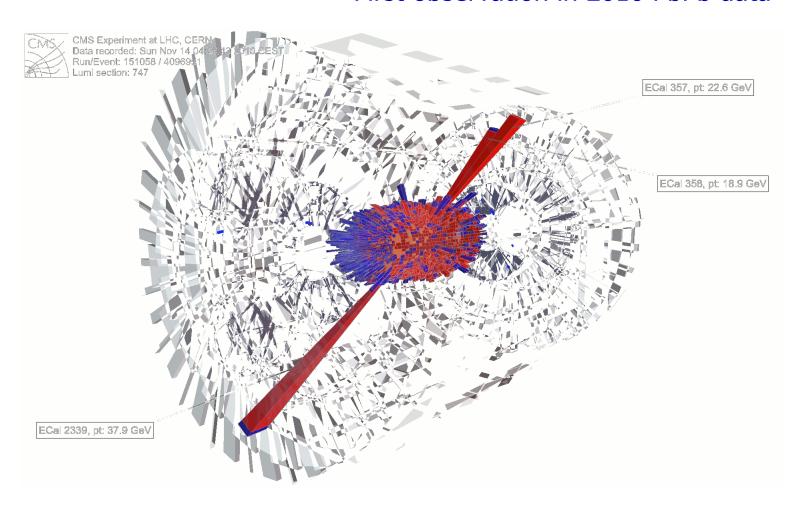
- No dependence with centrality observed.
- Within uncertainties, no violation of binary NN collision scaling is observed,
 - \rightarrow R_{AA}=1.00±0.16±0.14 referred to pp Powheg.


CMS

$Z\rightarrow \mu^+\mu^- + 1$ jet

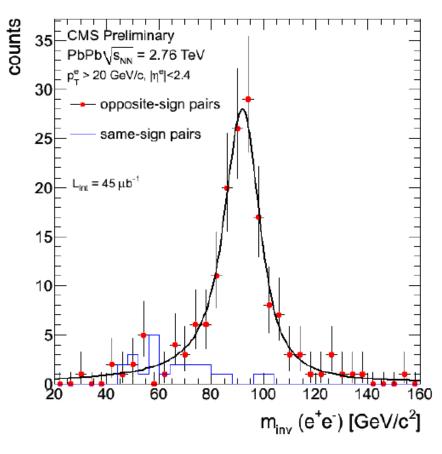
First look at exclusive Z production with jets

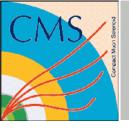
Can be used to calibrate parton traversing the medium (gives access to



Z→e+e-

First observation in 2010 PbPb data





Z→e+e-

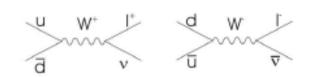
Already very promising Z boson mass peak with part of 2011 data

$W^{\pm} \rightarrow \mu^{\pm} \nu$ in PbPb

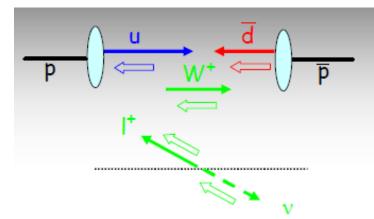
Main (naive) differences between W and Z boson:

- * W decays leptonically into 2 leptons (as Z boson) but one of the leptons is a neutrino, $W \rightarrow I \nu$, which is undetected experimentally.
- No mass peak (dilepton invariant mass) available for W bosons.
- ❖ Z bosons are neutral, while W bosons are charged → two different populations appear, W+ and W-

Experimental signature: a high p_T muon recoiling to (undetected) neutrino in transverse plane \longrightarrow significant imbalance in energy/momentum in event.



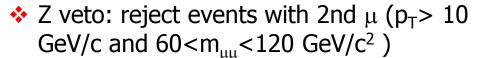
$W^{\pm} \rightarrow \mu^{\pm} \nu$ in PbPb



Three effects make W⁺ different from W⁻ production:

- - Different phase space (rapidity) for W⁺ and W⁻

- W[±] decay into lepton+neutrino is not charge symmetric, due to V-A EWK coupling (ν lefthanded) different angular distributions for decay μ⁺ and μ⁻
- W⁺ and W⁻ production sensitive to isospin effects (different quark content in proton and neutron, more d quarks available than u quarks in collision, and pdf(u)≠ pdf(d))



$\pm v$: Muons

https://twiki.cern.ch/twiki/bin/view/

- Events recorded by muon triggers, $p_T \ge 2-3 \text{ GeV/c}$
- Muon reconstructed offline ($|\eta|$ <2.1) with good quality:
 - Minimum N. Hits (Si-pixel, Sistrips, muon detectors)
 - $\rightarrow \chi^2$ cut on track fit (tracker-muon systems)
 - Compatible with primary vertex (dca < 0.3 mm)

CMSPublic/PhysicsResultsHIN11008 **CMS Preliminary** PbPb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 201 Events 104 L dt = $7.2 \, \mu b^{-1}$ cut $|\eta^{\mu}| < 2.1$ 10^{2} 10 20 40

60

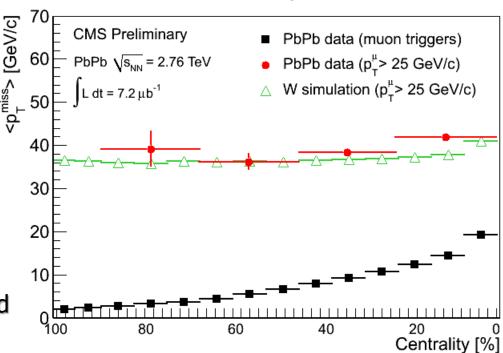
80

Excess of events in the muon p_T region (>30 GeV/c) where W (EWK) decay products are expected

Require $p_T^{\mu} > 25 \text{ GeV/c}$

$W^{\pm} \rightarrow \mu^{\pm} \nu$: Missing p_{T}

Energy/momentum imbalance in event measured as


Missing- $p_T = -\sum_{p_T}$ of all charged tracks with $p_T > pt_{thresh}$ with $pt_{thresh} = 3$ GeV/c

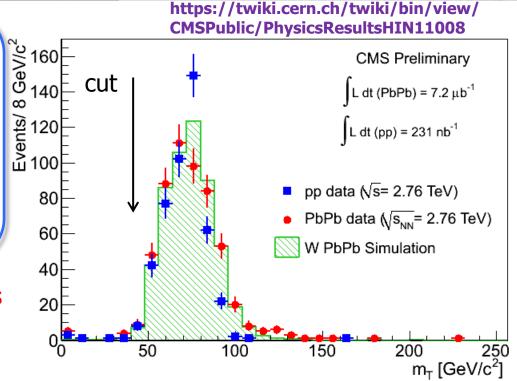
On Muon triggered events:

- Before selection:
 - Missing p_T dependent on collision centrality worse resolution
- ❖ After high p_T muon selection:
 - Missing p_T ~40 GeV/c, significantly larger than Missing-p_T resolution
 - Almost independent of centrality

W simulation: $W\rightarrow \mu \nu$ signals embedded in Hydjet PbPb simulated events.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN11008

$W^{\pm} \rightarrow \mu^{\pm} \nu$: m_T

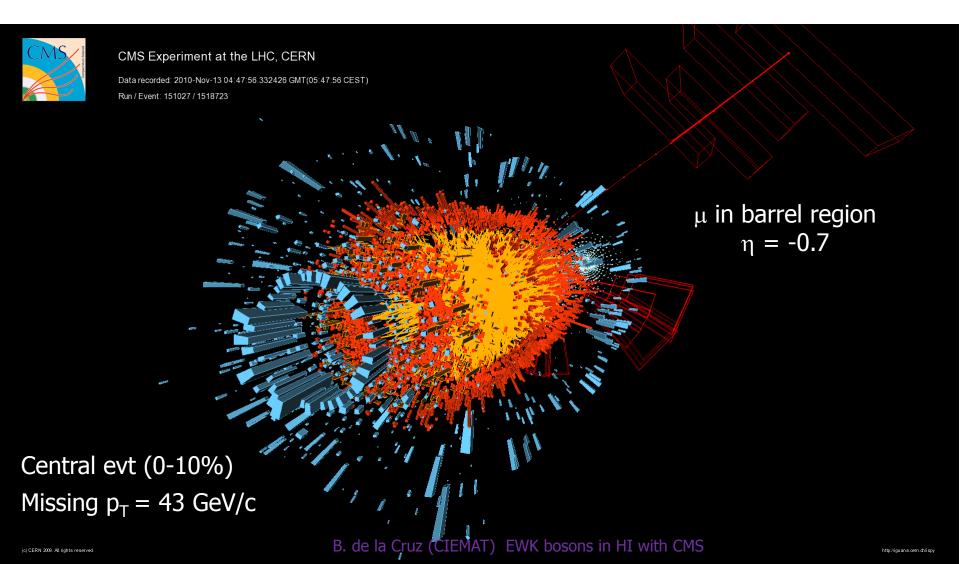

No mass peak available for W bosons, but Transverse Mass,

$$m_T = \sqrt{2p_T^{\mu} p_T^{miss} (1 - cos\phi)}$$

$$\phi = \phi(\mu) - \phi(p_T^{miss})$$


Sharp Jacobian peak at $m_T=m_W$, smeared by detector resolution.

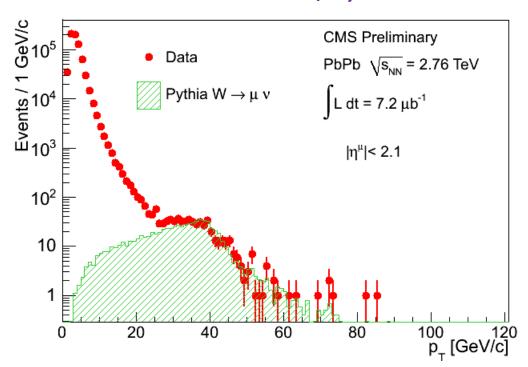
Build m_T for events with high p_T muons $(p_T>25 \text{ GeV/c})$ and $p_T^{miss} > 20 \text{ GeV/c}$.

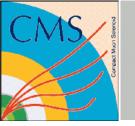

2011 pp data @ \sqrt{s} =2.76 TeV analyzed with same procedure.

- compatible W signals in PbPb and pp, almost background free.
- * Residual contamination ($Z \to \mu^+ \mu^-$, $W^{\pm} \to \tau^{\pm} \nu$) subtracted (2%); QCD (<1%) included in systematic uncertainty for both pp and PbPb.
- slightly better m_T resolution in pp than in PbPb (as expected)

$W^{\pm} \rightarrow \mu^{\pm} \nu$: Event Display

$W^{\pm} \rightarrow \mu^{\pm} \nu$


Selected events

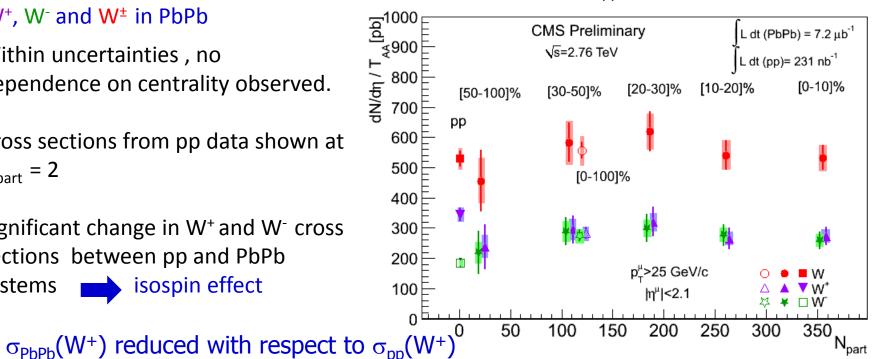

PbPb	pp
W + 275	301
W - 264	165

Pythia simulation pp \rightarrow WX \rightarrow $\mu\nu$ X @ \sqrt{s} =2.76 TeV normalized to the number of selected candidates

PbPb: Good description of the muon high p_T region!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN11008

Centrality Dependence



Yields $1/T_{AA}$ dN/d η evaluated separately for W⁺, W⁻ and W[±] in PbPb

- Within uncertainties , no dependence on centrality observed.
- Cross sections from pp data shown at $N_{part} = 2$
- ❖ Significant change in W⁺ and W⁻ cross sections between pp and PbPb isospin effect systems

 - $\sigma_{PbPb}(W^{-})$ enhanced with respect to $\sigma_{pp}(W^{-})$

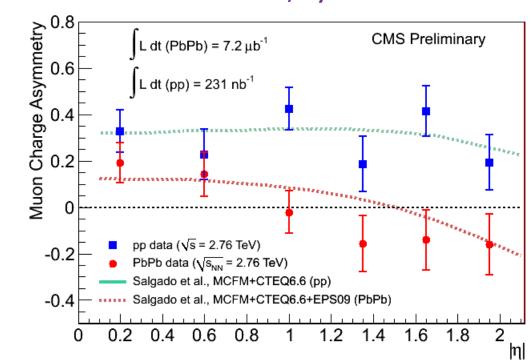

 $T_{AA} = \langle Ncoll \rangle / \sigma_{pp}^{inel}$

https://twiki.cern.ch/twiki/bin/view/ CMSPublic/PhysicsResultsHIN11008

But total cross sections (W=W++W-), consistent at LO with binary NN scaling

$$R_{AA} = dN/(T_{AA} \times \sigma_{DD}) = 1.04 \pm 0.07 \pm 0.12$$

Muon Charge Asymmetry $W^{\pm} \rightarrow \mu^{\pm} \nu$


Muon charge asymmetry

$$(dN(W^{+}) - dN(W^{-})) / (dN(W^{+}) + dN(W^{-}))$$

as a function of muon pseudorapidity (η) for PbPb and pp @ \sqrt{s} = 2.76 TeV collisions

- ❖ PbPb: Predominance of W⁻ production at low polar angles over W⁺
- pp: Larger W⁺ production than W⁻ one at all muon pseudorapidity studied.
- Asymmetry measured values compatible with theoretical predictions (MCFM + CTEQ6.6+EPS09 (nuclear PDFs))

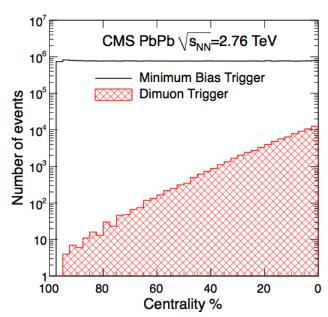
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN11008

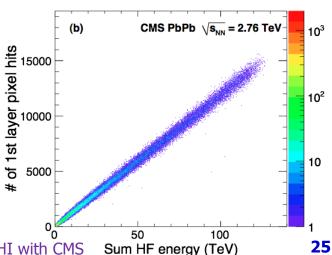
H. Paukkunen & C. Salgado JHEP03 (2011) 071

Conclusions

- ❖ Z & W boson production studied for the first time in history of HI collisions.
- ❖ They are established as unmodified with respect to both theoretical and experimental nucleon-nucleon cross sections, scaled by Ncoll → confirms validity of Glauber scaling.
- * Z kinematic distributions agree with NLO pQCD calculations and pp (\sqrt{s} = 7 TeV) results.
- Individual W⁺ & W⁻ yields in PbPb interactions manifest the isospin effect, enhancing W⁻ production and reducing W⁺ one, with respect to that measured in pp collisions at same √s, but total W yield results unmodified.
- Muon charge asymmetry evaluated in PbPb and pp interacting systems. In agreement with expectations from NLO pQCD calculations.
- W detailed and precise studies will open the window to neutron and its PDF determination.
- Thus, EWK bosons are established as reference particles for future studies.
- Many exciting measurements awaiting us in 2011 data!!

Backup





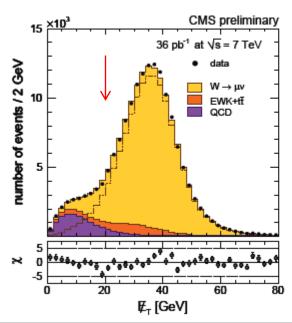

Data selection

- Minimum Bias Trigger
 - BSC coincidence or
 - > HF coincidence
- Dimuon Trigger
 - 3 GeV/c p_T cut per muon
- Offline selection
 - Veto on beam halo events
 - At least a 2-track primary vertex
 - Vertex compatibility with pixel cluster length
 - At least 3 HF towers on each side

$W^{\pm} \rightarrow \mu^{\pm} \nu$: Background

Backgrounds expected:

Signal region: remaining Z $\rightarrow \mu^+\mu^-$ (1 μ fail detection), W[±] $\rightarrow \tau^\pm \nu$. ttbar, diboson production (WW, WZ, ZZ) negligible (σ ~10-2, 10-3) Evaluated from simulation (Pythia) and subtracted: 2%

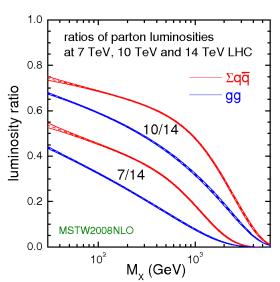

QCD processes: light (pions, kaons) and heavy quark (D, B) decays Evaluated from data : pp and PbPb data.

Not subtracted, but included in systematic uncertainties: 1%

Background estimation

2. From inclusive $\sigma(W)$ measurement in pp@7TeV: (AN-10-395)

QCD backgd is 5.1% of total selected sample (without cut in MET).

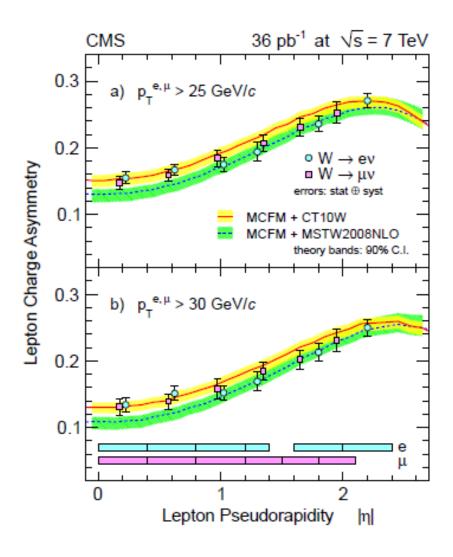

	CMS preliminary				
		36 pb ⁻¹ at	√s = 7 TeV		
≥ 10 ⁴		•	data		
№ 10³	Property A		$W \to \mu \nu$		
number of events / 2 GeV			EWK tt QCD		
් ₁₀		THE REAL PROPERTY.	in that		
_	7	hiller I			
10 ⁻¹	<u>-</u>	بازار	. <u></u>	, =	
× 5					
(100 [GeV]	150	200	

source	$N_{\rm bg}/(N_{\rm W}+N_{\rm bg})$	$N_{ m bg}$ in 36. pb $^{-1}$
QCD multi-jet	5.1%	8896
$Z \rightarrow \mu^{+}\mu^{-}$	3.5%	6163
$W \rightarrow \tau \nu$	2.7%	4667
$Z ightarrow au^+ au^-$	0.5%	911
WW+WZ+ZZ	0.1%	205
tīt	0.3%	592
EWK + t t	7.1%	12538
total	12.2%	21434
$W \rightarrow \mu \nu \text{ signal}$	87.8%	153940

QCD Backgd: Additional checks

Less QCD backgd expected at \sqrt{s} = 2.76 TeV than at 7 TeV (in pp collisions).

- b production proceeds via qqbar \rightarrow bb & gg \rightarrow bb, while W come primarily from qq'bar \rightarrow W. The component gg \rightarrow bb rises faster than qqbar with √s
- Additionally, in PbPb collisions there might be a further reduction factor coming from the probable heavy quark energy loss (quenching), measured by CMS, R_{AA} ~ 0.2 to 0.5 depending on the pt region and event centrality (CMS PAS HIN-10-006)



Conclusion on Background: ■ EWK contribution (2.1%) subtracted

QCD accounted in syst. Uncert. from backgd (1%)/47

Muon charge asymmetry

$$(\sigma(W^+) - \sigma(W^-)) / (\sigma(W^+) + \sigma(W^-))$$

Published by CMS pp data @ sqrt(s) = 7 TeV

$$R^{\pm} = \sigma^{+}/\sigma^{-} = 1.423 \pm 0.008 \text{ (stat)} \pm 0.019 \text{ (syst)} \pm 0.031 \text{(theo)}$$

JHEP 04 (2011) 050