Simulations of jet quenching and elliptic flow in a pQCD-based partonic transport model

Oliver Fochler

Institut für Theoretische Physik Goethe-Universität Frankfurt

High- p_T physics at LHC 26 March 2012

《口》《圖》《王》 도님

Heavy Ion Collisions are Complicated!

Models are needed for:

- Initial state
- Evolution of the medium
- High-p_T physics ("jet physics")
- Phase transition

Some tools:

- Parameterizations (e.g. Bjorken)
- Hydrodynamics
- Transport models

The problem

No model can describe all (most) aspects of the medium evolution.

Lattice QCD

AdS / CFT

pQCD (BDMPS, ASW, AMY, ...)

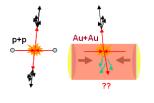
Heavy Ion Collisions are Complicated!

Models are needed for:

- Initial state
- Evolution of the medium
- High-p_T physics ("jet physics")
- Phase transition

Some tools:

- Parameterizations (e.g. Bjorken)
- Hydrodynamics
- Transport models


ELE STATE

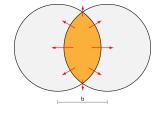
- Lattice QCD
- AdS / CFT
- pQCD (BDMPS, ASW, AMY, ...)

The problem

No model can describe all (most) aspects of the medium evolution.

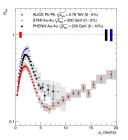
Elliptic Flow and Suppression of Jets

Jet suppression


$$\mathsf{R}_{AA} = rac{d^2 N_{AA}/dy \ dp_T}{T_{AA} \ d^2 \sigma_{NN}/dy \ dp_T}$$

 Strong suppression of jets compared to p+p reference

Collective behavior of the medium

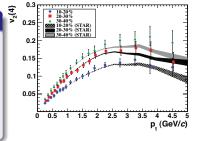

$$E rac{d^3N}{d^3p} \sim rac{d^2N}{dy \, dp_T} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n(\phi - \Psi_R)
ight]
ight)$$

- Elliptic flow: Fourier coefficient v2
- Hydrodynamic behavior

Common description of R_{AA} and v_2 is difficult

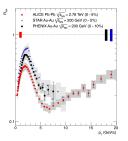
Elliptic Flow and Suppression of Jets

Jet suppression


$$\mathsf{R}_{AA} = rac{d^2 N_{AA}/dy \ dp_T}{T_{AA} \ d^2 \sigma_{NN}/dy \ dp_T}$$

 Strong suppression of jets compared to p + p reference

Collective behavior of the medium


$$\Xi \frac{d^3 N}{d^3 p} \sim \frac{d^2 N}{dy \, dp_T} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n(\phi - \Psi_R)\right] \right)$$

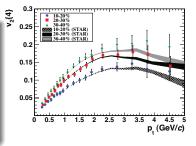
- Elliptic flow: Fourier coefficient v2
- Hydrodynamic behavior

Common description of R_{AA} and v_2 is difficult

Elliptic Flow and Suppression of Jets

Jet suppression

$$\mathsf{R}_{AA} = rac{d^2 N_{AA}/dy \ dp_T}{T_{AA} \ d^2 \sigma_{NN}/dy \ dp_T}$$


 Strong suppression of jets compared to p + p reference

Collective behavior of the medium

$$\Xi \frac{d^3 N}{d^3 p} \sim \frac{d^2 N}{dy \, dp_T} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n(\phi - \Psi_R)\right] \right)$$

- Elliptic flow: Fourier coefficient v2
- Hydrodynamic behavior

Common description of R_{AA} and v_2 is difficult

The Model - BAMPS

2 Elliptic Flow

Jet Suppression

- Static Medium Brick Scenario
- Dynamic Simulations of Heavy-Ion Collisions

Partonic Transport Model - BAMPS

BAMPS = Boltzmann Approach to Multiple Particle Scattering ¹

Microscopic transport simulations with full dynamics

Attack various problems within *one* model. (elliptic flow, R_{AA} , thermalization, ...)

Solve Boltzmann equation for 2 \rightarrow 2 and 2 \leftrightarrow 3 processes based on LO pQCD matrix elements.

$$\boldsymbol{\rho}^{\mu}\partial_{\mu}f\left(\boldsymbol{x},\boldsymbol{\rho}\right)=\mathcal{C}_{2\rightarrow2}\left(\boldsymbol{x},\boldsymbol{\rho}\right)+\mathcal{C}_{2\leftrightarrow3}\left(\boldsymbol{x},\boldsymbol{\rho}\right)$$

¹Z. Xu, C. Greiner, Phys. Rev. C71 (2005)

O. Fochler

Jets and v2 in Partonic Transport

Partonic Transport Model - BAMPS

BAMPS = Boltzmann Approach to Multiple Particle Scattering ¹

Microscopic transport simulations with full dynamics

Attack various problems within *one* model. (elliptic flow, *R*_{AA}, thermalization, ...)

Visualization by Jan Uphoff Visualization framework courtesy MADAI collaboration funded by the NSF under grant NSF-PHY-09-41373

¹Z. Xu, C. Greiner, Phys. Rev. C71 (2005)

O. Fochler

Jets and v2 in Partonic Transport

Partonic Transport Model - BAMPS

Monte Carlo sampling of interactions

- Massless Boltzmann particles (gluons, quarks)
- Discretize:
 - Spatial cells ΔV
 - Time steps Δt
- Sampling of interaction probabilities from LO pQCD
 - $2 \rightarrow 2$ Small angle cross sections
 - $2 \leftrightarrow 3$ Gunion Bertsch matrix element
- Fixed coupling ($\alpha_s = 0.3$)

gg
ightarrow gg cross section

Gunion Bertsch matrix element

$$\frac{d\sigma_{gg \to gg}}{dq_{\perp}^2} \simeq \frac{9\pi\alpha_s^2}{2(\mathbf{q}_{\perp}^2 + m_D^2)^2} \qquad |\mathcal{M}_{gg \to ggg}|^2 = \frac{72\pi^2\alpha_s^2s^2}{(\mathbf{q}_{\perp}^2 + m_D^2)^2} \frac{48\pi\alpha_s\mathbf{q}_{\perp}^2}{\mathbf{k}_{\perp}^2[(\mathbf{k}_{\perp} - \mathbf{q}_{\perp})^2 + m_D^2]}$$

Debye screening (dynamic): $m_D^2 = d_G \pi \alpha_s \int \frac{d^3 p}{(2\pi)^3} \frac{1}{p} (N_c f_g + N_f f_q)$

Implemented Processes (gluons and light quarks)

Original BAMPS version ($N_r = 0$): $gg \rightarrow gg$ Including light quarks ($N_r = 3$): $gg \rightarrow q\bar{q}$ $q\bar{q} \rightarrow gg$ and $q\bar{q} \rightarrow q'\bar{q}'$ $qg \rightarrow qg$ and $\bar{q}g \rightarrow \bar{q}g$ $q\bar{q} \rightarrow qg$ and $\bar{q}g \rightarrow \bar{q}g$ $q\bar{q} \rightarrow q\bar{q}$ and $\bar{q}g \rightarrow \bar{q}\bar{q}$ $qq \rightarrow qq$ and $\bar{q}\bar{q} \rightarrow \bar{q}\bar{q}$ $qq' \rightarrow qq'$ and $q\bar{q}' \rightarrow q\bar{q}'$ • Emission of gluon factorizes: $ \mathcal{M}_{GB} ^2 = \mathcal{M}_{coll} ^2 P^g$ • Re-use $\mathcal{M}_{gg \rightarrow ggg}$: $ \mathcal{M}_{X \rightarrow Xg} ^2 = \mathcal{M}_{X \rightarrow X} ^2 [\mathcal{M}_{gg \rightarrow ggg} ^2 / \mathcal{M}_{gg \rightarrow gg} ^2]$ • Use small angle cross sections for scaling \rightarrow simple prefactors	$2 \rightarrow 2$ processes	$2 \leftrightarrow 3 \text{ processes}$		
$g g \rightarrow q \bar{q}$ $q g \rightarrow q g g$ $q \bar{q} \rightarrow g g$ $q \bar{q} \rightarrow g g$ $q g \rightarrow q g$				
$q\bar{q} \rightarrow gg \text{and} q\bar{q} \rightarrow q'\bar{q}' \\ qg \rightarrow qg \text{and} \bar{q}g \rightarrow \bar{q}g \\ q\bar{q} \rightarrow q\bar{q} \text{and} \bar{q}g \rightarrow \bar{q}g \\ q\bar{q} \rightarrow q\bar{q} \text{and} \bar{q}\bar{q} \rightarrow \bar{q}\bar{q} \\ qq \rightarrow qq \text{and} \bar{q}\bar{q} \rightarrow \bar{q}\bar{q} \\ qq' \rightarrow qq' \text{and} q\bar{q}' \rightarrow q\bar{q}' \end{cases} \qquad $		Including light quarks ($N_f = 3$):		
$qg \rightarrow qg \text{and} \bar{q}g \rightarrow \bar{q}g qq \rightarrow qq \text{and} \bar{q}g \rightarrow \bar{q}g qq \leftrightarrow qqg \text{and} \bar{q}\bar{q} \leftrightarrow \bar{q}\bar{q}g qq \leftrightarrow qqg \text{and} \bar{q}\bar{q} \leftrightarrow \bar{q}\bar{q}g qq' \leftrightarrow qq'g \text{and} q\bar{q}' \leftrightarrow q\bar{q}'g qq' \leftrightarrow q\bar{q}'g \text{and} q\bar{q}' \leftrightarrow q\bar{q}'g qq' \leftrightarrow qq'g qq' qq' \neq qq' qq'' qq'' qq'' qq'' qq'' qq'' qq'' $		$qg \leftrightarrow qgg$ and $\bar{q}g \leftrightarrow \bar{q}gg$		
$q\bar{q} \rightarrow q\bar{q} \qquad q\bar{q} \rightarrow q\bar{q} \rightarrow q\bar{q} \qquad q\bar{q} \rightarrow q\bar{q} \qquad q\bar{q} \rightarrow q\bar{q} \qquad q\bar{q} \rightarrow q\bar{q} \qquad qq$		$qar{q} \leftrightarrow qar{q}g$		
$q q \rightarrow q q \text{and} \bar{q} \bar{q} \rightarrow \bar{q} \bar{q}$ $q q' \rightarrow q q' \text{and} q \bar{q}' \rightarrow q \bar{q}'$ • Emission of gluon factorizes: $ \mathcal{M}_{GB} ^2 = \mathcal{M}_{coll} ^2 P^g$ • Re-use $\mathcal{M}_{gg \rightarrow ggg}$: $ \mathcal{M}_{X \rightarrow Xg} ^2 = \mathcal{M}_{X \rightarrow X} ^2 \left[\mathcal{M}_{gg \rightarrow ggg} ^2 / \mathcal{M}_{gg \rightarrow ggg} ^2\right]$	$qg ightarrow qg$ and $ar{q}g ightarrow ar{q}g$	$q q \leftrightarrow q q g$ and $\bar{q} \bar{q} \leftrightarrow \bar{q} \bar{q} g$		
$q q' \rightarrow q q' \text{and} q \bar{q}' \rightarrow q \bar{q}'$ $\bullet \text{ Emission of gluon factorizes: } \mathcal{M}_{\text{GB}} ^2 = \mathcal{M}_{\text{coll}} ^2 P^g$ $\bullet \text{ Re-use } \mathcal{M}_{gg \rightarrow ggg} : \mathcal{M}_{X \rightarrow Xg} ^2 = \mathcal{M}_{X \rightarrow X} ^2 \left[\mathcal{M}_{gg \rightarrow ggg} ^2 / \mathcal{M}_{gg \rightarrow ggg} ^2 \right]$	$qar{q} o qar{q}$	$q q' \leftrightarrow q q' g$ and $q \bar{q}' \leftrightarrow q \bar{q}' g$		
• Emission of gluon factorizes: $ \mathcal{M}_{GB} ^2 = \mathcal{M}_{coll} ^2 P^g$ • Re-use $\mathcal{M}_{gg \to ggg}$: $ \mathcal{M}_{X \to Xg} ^2 = \mathcal{M}_{X \to X} ^2 \left[\mathcal{M}_{gg \to ggg} ^2 / \mathcal{M}_{gg \to ggg} ^2 \right]$	$qq ightarrow qq$ and $ar{q}ar{q} ightarrow ar{q}ar{q}$			
• Re-use $\mathcal{M}_{gg \to ggg}$: $ \mathcal{M}_{X \to Xg} ^2 = \mathcal{M}_{X \to X} ^2 \left[\mathcal{M}_{gg \to ggg} ^2 / \mathcal{M}_{gg \to gg} ^2 \right]$	$qq^\prime o qq^\prime$ and $qar q^\prime o qar q^\prime$			
• Re-use $\mathcal{M}_{gg \to ggg}$: $ \mathcal{M}_{X \to Xg} ^2 = \mathcal{M}_{X \to X} ^2 \left[\mathcal{M}_{gg \to ggg} ^2 / \mathcal{M}_{gg \to gg} ^2 \right]$		J		
	Emission of gluon factorizes: M _{GB} ²	$= \left \mathcal{M}_{\text{coll}} \right ^2 P^g$		
	• Re-use M_{ac} and $ M_{X}, x_{c} ^{2} = M_{X} ^{2}$	$ ^{2} \left[M_{aa} + aaa ^{2} / M_{aa} + aa ^{2} \right]$		
ullet Use small angle cross sections for scaling $ o$ simple prefactors				
	Ŭ	0 1 1		

Implemented Processes (gluons and light quarks)

$2 \rightarrow 2 \text{ proce}$	sses		$2 \leftrightarrow 3 \text{ proce}$	sses	
Original BAMPS version ($N_f = 0$): $g g \rightarrow g g$			Original BAMPS version ($N_f = 0$): $gg \leftrightarrow ggg$		
Including light quarks ($N_f = 3$):			Including light quarks ($N_f = 3$):		
$gg ightarrow qar{q}$			$qg \leftrightarrow qgg$	and	$ar{q}g \leftrightarrow ar{q}gg$
$qar{q} o gg$	and	$qar{q} o q'ar{q}'$	$qar{q}\leftrightarrow qar{q}g$		
qg ightarrow qg	and	$ar{q}g oar{q}g$	$qq \leftrightarrow qqg$	and	$ar{q}ar{q} \leftrightarrow ar{q}ar{q}g$
$qar{q} o qar{q}$			$qq' \leftrightarrow qq'g$	and	$qar{q}' \leftrightarrow qar{q}'g$
qq ightarrow qq	and	$ar{q}ar{q} o ar{q}ar{q}$			
$qq^\prime o qq^\prime$	and	$qar{q}' o qar{q}'$			
			J		

• Emission of gluon factorizes: $|\mathcal{M}_{GB}|^2 = |\mathcal{M}_{coll}|^2 P^g$

• Re-use $\mathcal{M}_{gg \to ggg}$: $|\mathcal{M}_{X \to Xg}|^2 = |\mathcal{M}_{X \to X}|^2 \left[|\mathcal{M}_{gg \to ggg}|^2 / |\mathcal{M}_{gg \to gg}|^2 \right]$

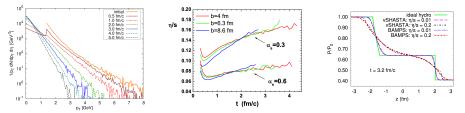
• Use small angle cross sections for scaling \rightarrow simple prefactors

Implemented Processes (gluons and light quarks)

$2 \rightarrow 2$ processes	$2 \leftrightarrow 3 \text{ processes}$		
Original BAMPS version ($N_f = 0$): $g g \rightarrow g g$	Original BAMPS version ($N_f = 0$): $gg \leftrightarrow ggg$		
Including light quarks ($N_f = 3$): $g g ightarrow q \bar{q}$ $q \bar{q} ightarrow g g$ and $q \bar{q} ightarrow q' \bar{q}'$ $q g ightarrow q g$ and $\bar{q} g ightarrow \bar{q} g$ $q \bar{q} ightarrow q \bar{q}$ $q q ightarrow q q$ and $\bar{q} \bar{q} ightarrow \bar{q} \bar{q}$ $q q' ightarrow q q'$ and $q \bar{q}' ightarrow q \bar{q}'$	Including light quarks $(N_f = 3)$: $qg \leftrightarrow qgg$ and $\bar{q}g \leftrightarrow \bar{q}gg$ $q\bar{q} \leftrightarrow q\bar{q}g$ $qq \leftrightarrow qqg$ and $\bar{q}\bar{q} \leftrightarrow \bar{q}\bar{q}g$ $qq' \leftrightarrow qq'g$ and $q\bar{q}' \leftrightarrow q\bar{q}'g$		

• Emission of gluon factorizes: $|\mathcal{M}_{GB}|^2 = |\mathcal{M}_{coll}|^2 P^g$

• Re-use $\mathcal{M}_{gg \to ggg}$: $|\mathcal{M}_{X \to Xg}|^2 = |\mathcal{M}_{X \to X}|^2 \left[|\mathcal{M}_{gg \to ggg}|^2 / |\mathcal{M}_{gg \to gg}|^2 \right]$

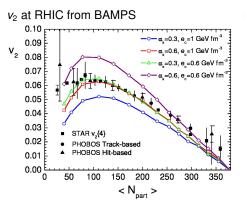

- $\bullet~$ Use small angle cross sections for scaling \rightarrow simple prefactors
- Modell LPM effect by rate-dependent cutoff in 2 ↔ 3 processes

Some Results from BAMPS

- Fast thermalization,
 1 fm/c Z. Xu, C. Greiner, PRC 71 (2005)
- Small viscosity, η/s ≃ 0.1 − 0.2
 Z. Xu, C. Greiner, H. Stoecker PRL 101 (2008) / Z. Xu, C. Greiner PRL 100 (2008)
- Investigate heavy quark production and dynamics
 J. Uphoff, OF et al., PRC 82 (2010)
- Can serve as reference for viscous hydro I. Bouras et al. PRL 103 (2009)

Investigate hydrodynamic shocks / Mach cones

I. Bouras et al. PRL 103 (2009) / I. Bouras et al. J.Phys.Conf.Ser. 270

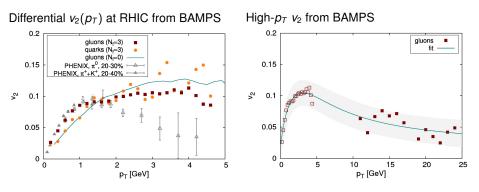


The Model - BAMPS

2 Elliptic Flow

Jet Suppression

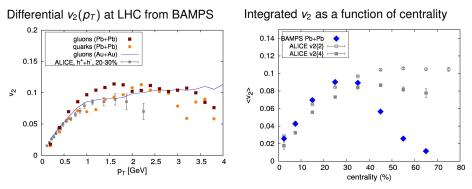
- Static Medium Brick Scenario
- Dynamic Simulations of Heavy-Ion Collisions


Parameters:

- Coupling $\alpha_s = 0.3$ to $\alpha_s = 0.6$
- Freeze-out energy density $\varepsilon_c = 0.6 \text{ GeV fm}^{-3}$ to $\varepsilon_c = 1.0 \text{ GeV fm}^{-3}$
- $N_f = 0$ (purely gluons)
- Mini jet initial conditions (p₀ = 1.4 GeV)

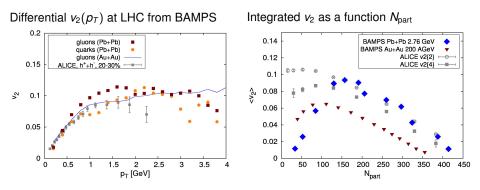
- Medium develops strong collectivity using pQCD-based interactions Xu, Greiner, PRC 79 (2009)
- $\langle v_2 \rangle$ can be described over a large range of centrality

・ 御 ト ・ ヨ ト 三 国


Elliptic flow at RHIC

- Differential elliptic flow of gluons and quarks is (almost) the same
- NCQ scaling the experimental data, the magnitude of quark v₂(p_T) is ok, but peak shifts ⇒ hadronization mechanisms?
- Qualitative features of high- $p_T v_2$ agree with PHENIX π^0 data
 - fitted using $v_2(p_T) = \left(a + \frac{1}{p_T^n}\right) \frac{(p_T/\lambda)^m}{1 + (p_T/\lambda)^m}$

4 60 5 4 5


Elliptic flow at LHC

- Differential v₂(p_T) in LHC and RHIC simulations (almost) the same
- Integrated v₂ is increased due to shift in (p_T)
- Integrated v₂ drops too fast below N_{part} ≈ 150 Artefact of meanwhile fixed problem

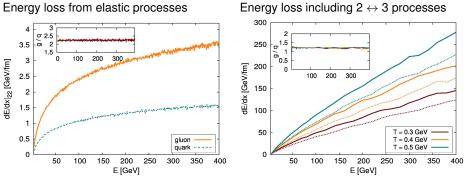
(日)

Elliptic flow at LHC

- Differential v₂(p_T) in LHC and RHIC simulations (almost) the same
- Integrated v₂ is increased due to shift in (p_T)
- Integrated v₂ drops too fast below N_{part} ≈ 150 Artefact of meanwhile fixed problem

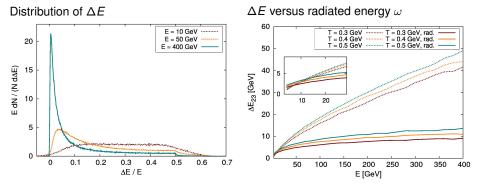
(日)

The Model - BAMPS


2 Elliptic Flow

3 Jet Suppression

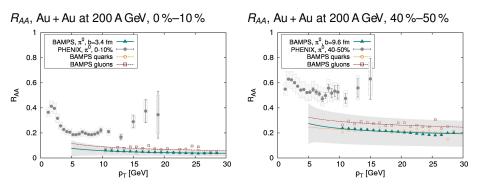
- Static Medium Brick Scenario
- Dynamic Simulations of Heavy-Ion Collisions


Energy Loss in a Static Medium

Static Medium (brick): T = const, no expansion

- Strong energy loss from 2 \rightarrow 3 processes
 - Complex interplay of GB matrix element and LPM cutoff
 - Prefered gluon radiation into *y* < 0 (backward) direction
- Only small difference between quarks and gluons
 - Iterative computation of rates due to LPM restriction

Energy Loss in a Static Medium

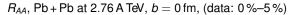

• Broad distribution of energy loss ΔE per collision

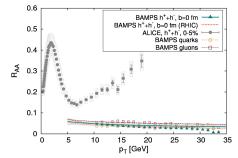
• ΔE is larger than the energy of the radiated gluon

•
$$\Delta E = E_{in} - max(E^i_{out}) \ge \omega$$

(日)

Jet Suppression in RHIC Simulations

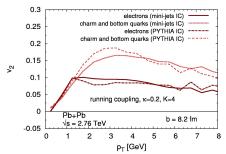



- Hadronization via AKK fragmentation functions
- Suppression in BAMPS is too strong
 - $\bullet~$ Strong mean energy loss in 2 \rightarrow 3 processes
 - Sizeable conversion of quark jets into gluon jets
 - Small difference in the energy loss of quarks and gluons

э

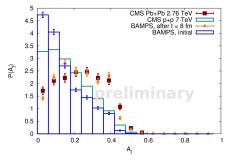
• • • • • • • • •

Jet Suppression in LHC Simulations



• PYTHIA initial conditions (Uphoff, OF et al. PRC 82 (2010)) $\alpha_s = 0.3, \varepsilon_c = 0.6 \text{ GeV fm}^{-3}$

R_{AA} almost identical to RHIC, does not reproduce rise towards large *p_T*


Advertisement - Other projects

Heavy flavor in BAMPS

Talk by Jan Uphoff

Reconstructed jets in BAMPS

Talk by Florian Senzel

▲□▶▲圖▶▲圖▶ 문]님

• Partonic transport provides means of:

- exploring the dynamics of the medium evolution based on pQCD processes
- exploring different observables within a common framework
- Strong collective flow of the medium is reproduced
- Suppression of jets is too strong using the same parameters

There is a lot of ongoing work aimed at improvements and future extensions...

▲ ศ型 ▶ ▲ 三 ▶ 三三 日

• Partonic transport provides means of:

- exploring the dynamics of the medium evolution based on pQCD processes
- exploring different observables within a common framework
- Strong collective flow of the medium is reproduced
- Suppression of jets is too strong using the same parameters

There is a lot of ongoing work aimed at improvements and future extensions...

Outlook

Some more of our current and planned projects:

Running coupling for interactions of light quarks and gluons

- A lot of work already done for heavy quark interactions (by Jan Uphoff)
- Numerically challenging

Explore sensitivity of results on model parameters

- Especially: LPM cutoff and the freeze out criterion
- Also investigate fluctuations? (numerically challenging)

Explore local Monte Carlo implementation of the LPM effect

- Zapp, Wiedemann, et al. / Coleman-Smith, Bass, et al.
- 1st step: apply only to $2 \rightarrow 3$ involving high energy particles

(日)

Outlook

Some more of our current and planned projects:

Running coupling for interactions of light quarks and gluons

- A lot of work already done for heavy quark interactions (by Jan Uphoff)
- Numerically challenging

Explore sensitivity of results on model parameters

- Especially: LPM cutoff and the freeze out criterion
- Also investigate fluctuations? (numerically challenging)

Explore local Monte Carlo implementation of the LPM effect

- Zapp, Wiedemann, et al. / Coleman-Smith, Bass, et al.
- 1st step: apply only to 2 ightarrow 3 involving high energy particles

(日)

Outlook

Some more of our current and planned projects:

Running coupling for interactions of light quarks and gluons

- A lot of work already done for heavy quark interactions (by Jan Uphoff)
- Numerically challenging

Explore sensitivity of results on model parameters

- Especially: LPM cutoff and the freeze out criterion
- Also investigate fluctuations? (numerically challenging)

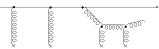
Explore local Monte Carlo implementation of the LPM effect

- Zapp, Wiedemann, et al. / Coleman-Smith, Bass, et al.
- 1st step: apply only to 2 \rightarrow 3 involving high energy particles

(日本)(周本)(日本)(日本)

Additional material

(日本)(周本)(日本)(日本)



▲□▶▲圖▶▲臣▶ 토]님

Modelling of the LPM Effect

LPM effect

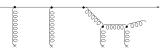
Multiple gluon emission \Rightarrow interference

- Difficult to realize in a semi-classical transport model
- Ansatz: Discard possible interference processes (Bethe-Heitler)

Parent must not scatter during formation time of emitted gluon

$$\left|M_{gg \rightarrow ggg}\right|^{2} \longrightarrow \left|M_{gg \rightarrow ggg}\right|^{2} \Theta\left(\lambda - \tau\right)$$

Comparison of λ und τ requires consideration of different Lorentz frames


$$\Theta\left(\lambda - au
ight) = \Theta\left(k_{\perp}\lambda - rac{\cosh y}{\sqrt{1 - {eta'}^2}}\left(1 + eta'\, au ext{anh}\, y\, \cos heta
ight)
ight)$$

《曰》《曰》《曰》《曰》

Modelling of the LPM Effect

LPM effect

Multiple gluon emission \Rightarrow interference

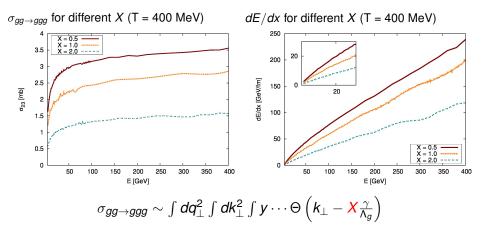
- Difficult to realize in a semi-classical transport model
- Ansatz: Discard possible interference processes (Bethe-Heitler)

Parent must not scatter during formation time of emitted gluon

$$\left| M_{gg \rightarrow ggg} \right|^2 \longrightarrow \left| M_{gg \rightarrow ggg} \right|^2 \Theta \left(\lambda - \tau \right)$$

Comparison of λ und τ requires consideration of different Lorentz frames

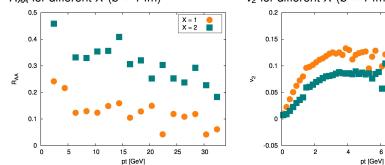
$$\Theta\left(\lambda-\tau\right) = \Theta\left(k_{\perp}\lambda - \frac{\cosh y}{\sqrt{1-{\beta'}^2}}\left(1+\beta'\,\tanh y\,\cos\theta\right)\right)^{\frac{1}{2}}$$


Parameters in BAMPS

- Coupling strength \(\alpha_s\)
- Critical freeze-out energy density ε_c
- LPM cut-off

The effective implementation of the LPM cut-off requires $\Lambda_g > \tau$. Only qualitative argument, introduce factor *X* to test sensitivity.

$$\Theta\left(\mathbf{k}_{\perp} - \frac{\gamma}{\Lambda_{g}}\right) \to \Theta\left(\mathbf{k}_{\perp} - \mathbf{X}\frac{\gamma}{\Lambda_{g}}\right)$$


Sensitivity on the LPM Cut-Off

- Large X reduces total cross section
- Sampling of outgoing particles affected in non-trivial way
- Energy loss per collision only slightly affected, main contribution to the change in energy loss from change in σ.

```
O. Fochler
```

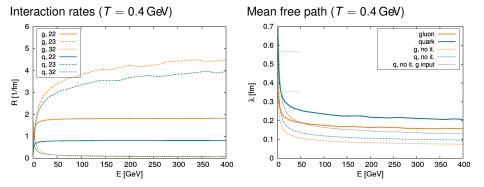
Sensitivity on the LPM Cut-Off

R_{AA} for different X (b = 7 fm)

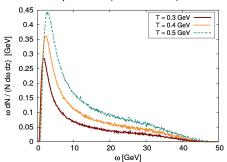
 v_2 for different X (b = 7 fm)

8

6

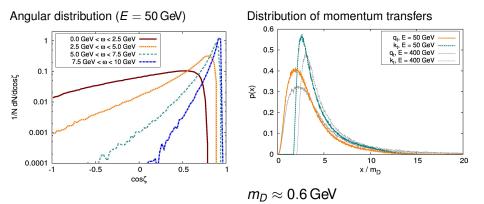

10

 $\begin{array}{c} X = 1 \\ X = 2 \end{array}$



Rates and Mean Free Paths

28 / 20


▲□▶▲圖▶▲臣▶ 토]님

Radiation spectrum ($E = 50 \,\text{GeV}$)

(日) (图) (전) (전)

Radiation Distributions

+ □ > + 個 > + 回 > 三回