Measurement of quarkonium production in PbPb collisions at  $\sqrt{s_{NN}} = 2.76$  TeV with CMS

#### Mihee Jo Korea University



for the CMS collaboration

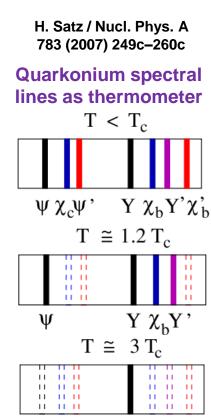


7th International Workshop On High-pT Physics At LHC

#### Outline

- Introduction
- J/ $\psi$  production at PbPb  $\sqrt{s_{NN}}$  = 2.76 TeV
  - Prompt and non-prompt J/ $\psi$  separation
  - Prompt and non-prompt J/ $\psi$  R\_AA
- $\Upsilon$  production at PbPb  $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 
  - $\Upsilon$ (2S+3S) suppression
  - Υ(1S) R<sub>AA</sub>






#### Quarkonia in heavy ion collisions

- Good candidates to probe the QGP in heavy ion collisions
  - Large masses and dominantly produced at the early stage of the collision by hard-scattering of gluons
  - Characterized by its binding energy and radius

|                         | J/ψ  | χς   | ψ <b>(2s)</b> | Ύ (1s) | Ύ (2s) | Ύ (3s) |
|-------------------------|------|------|---------------|--------|--------|--------|
| M (GeV/c <sup>2</sup> ) | 3.10 | 3.53 | 3.68          | 9.46   | 10.02  | 10.36  |
| ΔE (GeV)                | 0.64 | 0.20 | 0.05          | 1.10   | 0.54   | 0.20   |
| r <sub>0</sub> (fm)     | 0.50 | 0.72 | 0.90          | 0.28   | 0.56   | 0.78   |

- Debye screening radius decreases with increasing temperature
   → Sequential melting
- Thermometer for the temperature reached in the HI collisions





Y

#### Compact Muon Solenoid

#### **CMS Detector**

Pixels (100 x 150 μm<sup>2</sup>) ~1m<sup>2</sup> ~66M channels Microstrips (80-180μm) ~200m<sup>2</sup> ~9.6M channels

SILICON TRACKER

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO<sub>4</sub> crystals

MUON CHAMBERS

PRESHOWER Silicon strips ~16m<sup>2</sup> ~137k channels

~13000 tonnes

STEEL RETURN YOKE

Pixels

ECAL HCAL

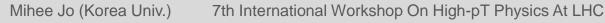
Tracker

Solenoid

Muons

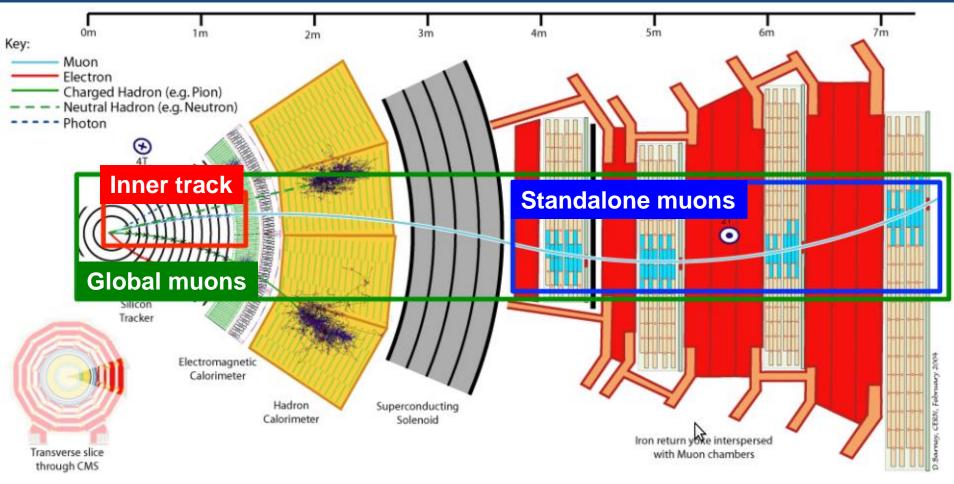
**Steel Yoke** 

SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

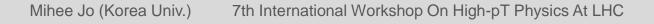

Total weight Overall diameter Overall length Magnetic field : 14000 tonnes : 15.0 m : 28.7 m : 3.8 T HADRON CALORIMETER (HCAL) Brass + plastic scintillator ~7k channels CALORIMETER Steel + quartz fibres ~2k channels

FORWARD

Barrel: 250 Drift Tube & 480 Besistive Plate Chambers


Endcaps: 468 Cathode Strip & 432 Resistive Plate Chambers

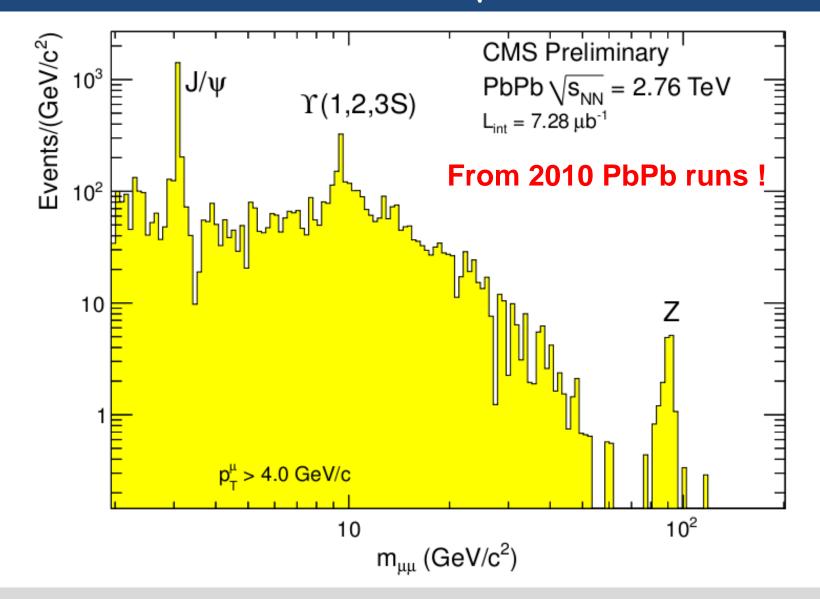
CMS






### Muon reconstruction in CMS




- Excellent muon identification & triggering (Muon system)
- High mass/momentum resolution (Tracker)

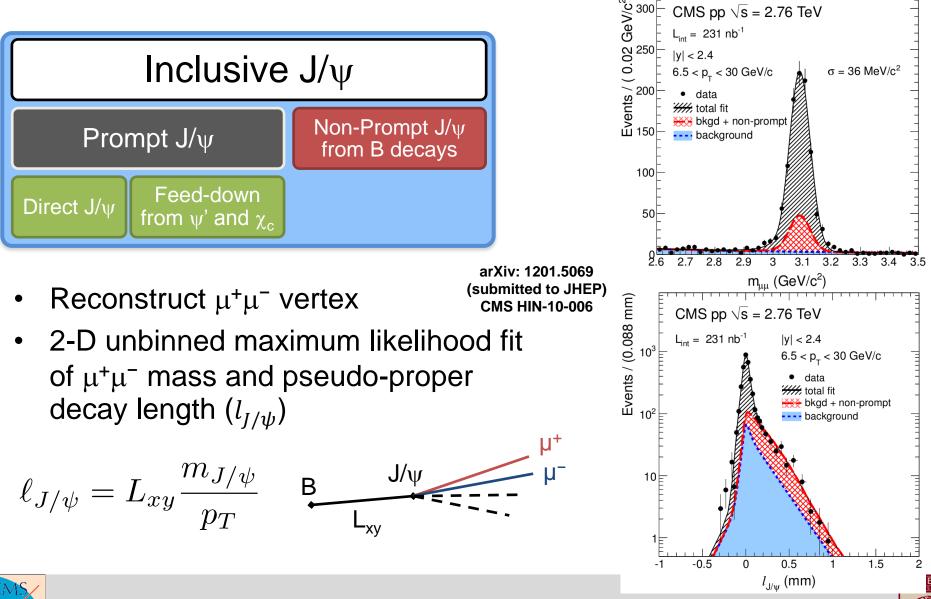




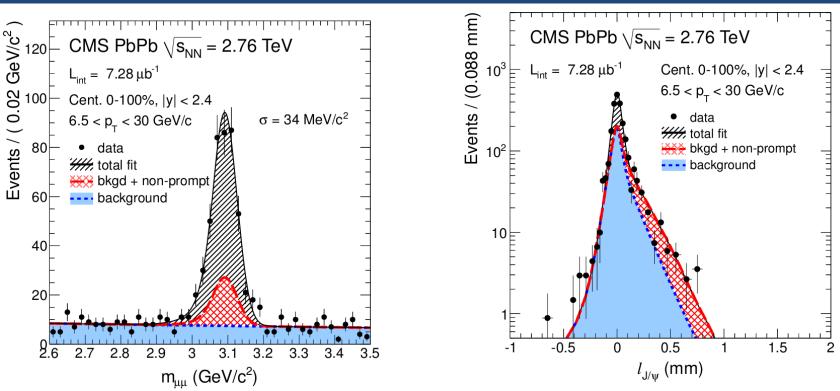


#### Dimuons in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV






Mihee Jo (Korea Univ.) 7th International Workshop On High-pT Physics At LHC





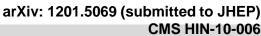


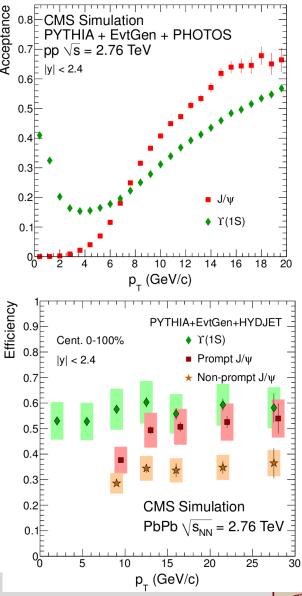



# J/ $\psi$ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV



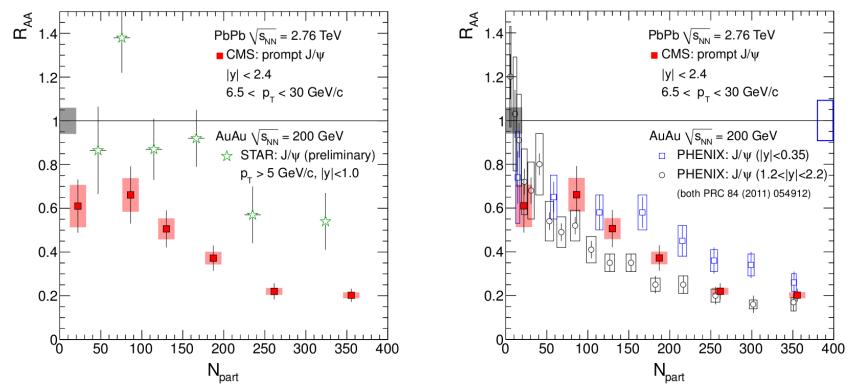
- Prompt and non-prompt  $J/\psi$  separation in PbPb
- Quarkonia in pp at  $\sqrt{s_{NN}}$  = 2.76 TeV is used as a reference
  - Same HI reconstruction algorithm & analysis method has been used in PbPb and pp data  $R_{AA} = \frac{\mathcal{L}_{pp}}{N_{PbPb}(J/\psi)} \frac{N_{PbPb}(J/\psi)}{\varepsilon_{pp}}$


$$\mathcal{L}_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{\rm MB}} \frac{N_{\rm PbPb}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\rm PbPb}(\rm cent)}$$






### Efficiency and acceptance


- MC simulations with PYTHIA
  - Prompt J/ $\psi$  and  $\Upsilon(1S)$ 
    - · With the unpolarized scenario
  - Non-prompt J/ $\psi$ 
    - Polarization as predicted by EvtGen
- Acceptance
  - No acceptance for J/ $\psi$  at mid-rapidity with  $p_T$  < 6.5 GeV/c
  - At forward rapidity, acceptance for J/ $\psi$  with  $p_T > 3 \text{ GeV/c}$
  - Acceptance for  $\Upsilon$  with  $p_T > 0$  GeV/c at all rapidities
- Efficiencies
  - Embedded signal in min-bias event simulated with HYDJET
  - Validated MC by comparing efficiencies measured with "Tag & Probe" in MC and data



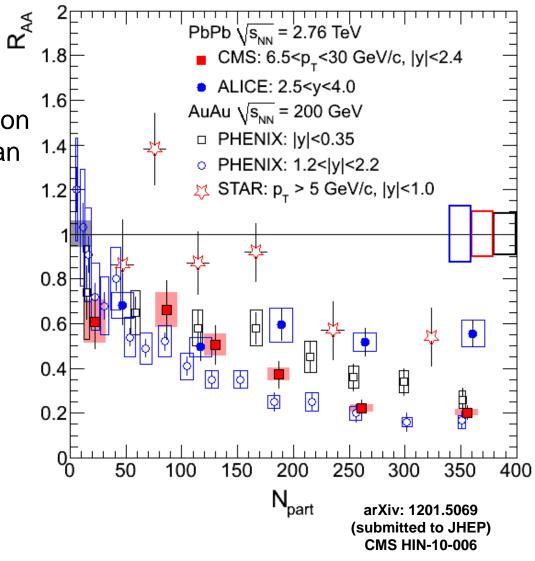








- 0-10% suppressed by factor 5
- 50-100% suppressed by factor ~1.6
- STAR measures less suppression at high p<sub>T</sub> (> 5 GeV/c)
- Similar suppression seen in CMS and PHENIX (Despite of lower p<sub>T</sub> range at lower energy)


CMS



## Prompt J/ $\psi$ R<sub>AA</sub> vs. N<sub>part</sub>

arXiv:1202.1383

- ALICE measured less suppression & less centrality dependence than CMS
  - Lower p<sub>T</sub>: Expect to be more sensitive to effects from recombination than CMS
  - More forward y region







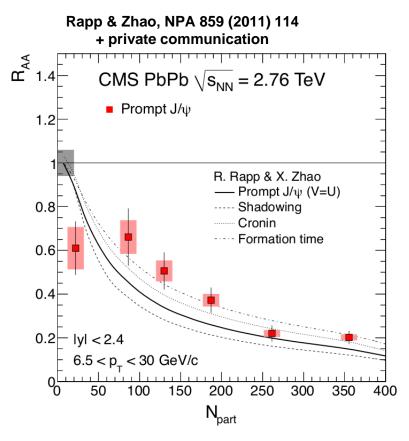
## Prompt J/ $\psi$ R<sub>AA</sub> & theory comparison

⊈ ⊈ 1.4

1.2

0.8

0.6


0.4

 $0.2 \vdash |y| < 2.4$ 

50

6.5 < p\_ < 30 GeV/c

100



Recombination negligible for  $p_T > 6.5$  GeV/c

Suppression by cold-nuclear-matter effect seems to be much smaller than observation

200

N<sub>part</sub>

150

Ferreiro et al. (preliminary)

CNM: CEM NLO

EKS

250

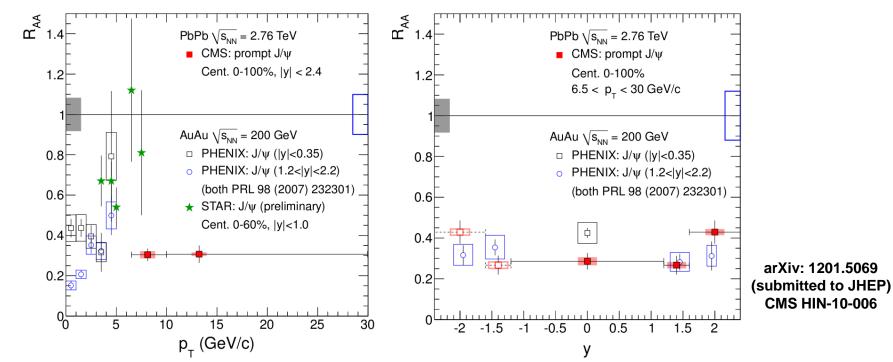
nDSa

Ferreiro, Fleuret, Rakotozafindrabe, Lansberg, and Matagne (preliminary)

300

350

CMS PbPb  $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 

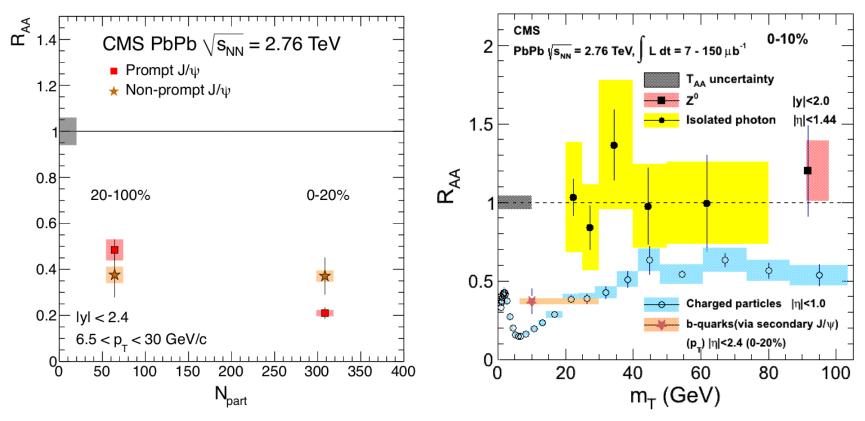

Prompt J/ψ




12

400

# Prompt J/ $\psi$ R<sub>AA</sub> vs. p<sub>T</sub> and y




- High  $p_T J/\psi$ 's tendency to survive at RHIC (and SPS) is not seen at the LHC
- CMS shows opposite trend vs. y than PHENIX but different  $p_T$
- Increasing  $R_{AA}$  going towards ALICE y range
  - ALICE inclusive J/ $\psi$  R<sub>AA</sub> = 0.545±0.032±0.84 (p<sub>T</sub> > 0 GeV/c, 0-80%) arXiv:1202.1383
  - In pp at low  $p_T$ : ~10% b-fraction  $\rightarrow$  Non-prompt J/ $\psi$  could shift  $R_{AA}$  by 11 %





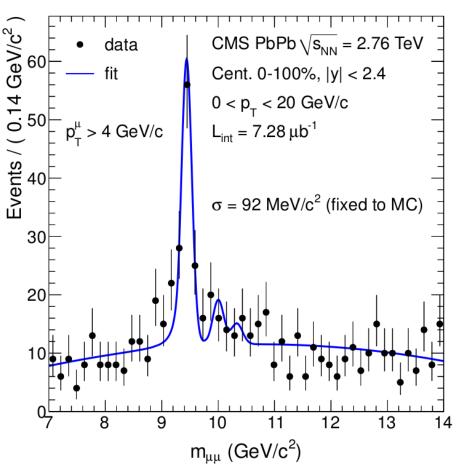
## Non-prompt J/ $\psi$ R<sub>AA</sub>



Suppression of non-prompt J/ $\psi$  observed in min-bias and central PbPb at  $\sqrt{s_{NN}} = 2.76 TeV$ 

- First indications of high-p<sub>T</sub> b-quark quenching !
- No centrality dependence

arXiv: 1201.5069 (submitted to JHEP) CMS HIN-10-006






14

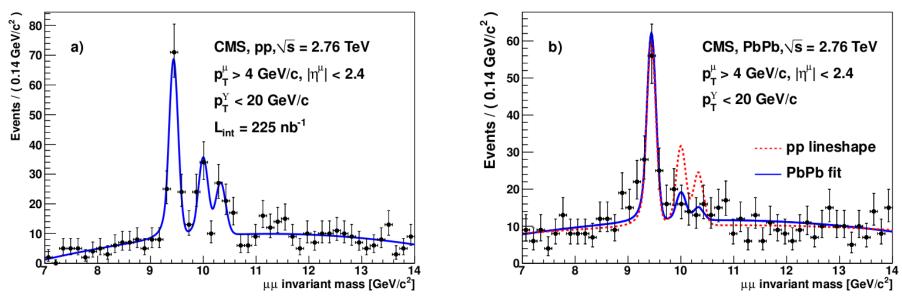
# $\Upsilon(nS)$ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

- Signal extraction
  - A Crystal Ball for 1 resonance
  - Peak separation is fixed to PDG values
  - Mass resolution is forced to scale linearly with resonance mass
  - Fixed Y(1S) resolution from simulation is consistent with not-fixed resolution



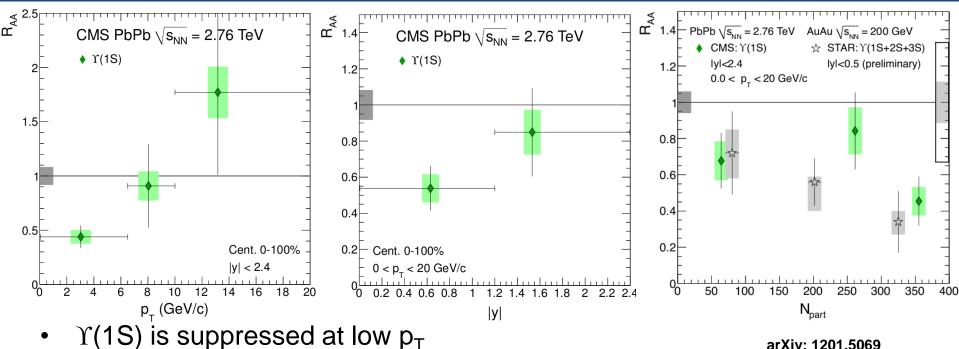
arXiv: 1201.5069 (submitted to JHEP) CMS HIN-10-006






## $\Upsilon$ (2S+3S) suppression

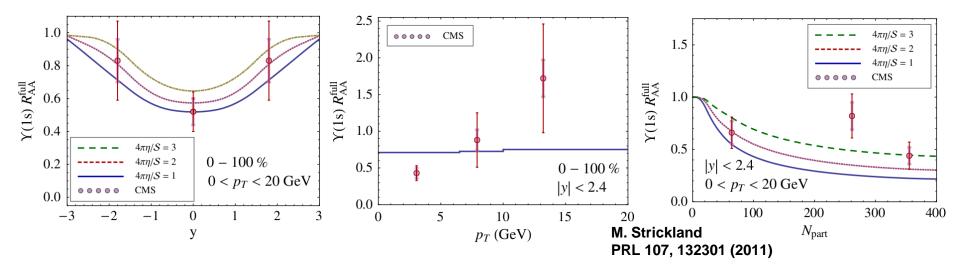
- $\Upsilon(2S+3S)$  production relative to  $\Upsilon(1S)$  in pp and PbPb
- Simultaneous fit to PbPb and pp data at 2.76 TeV


 $\frac{\Upsilon(2S+3S)/\Upsilon(1S)|_{PbPb}}{\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}} = 0.31^{+0.19}_{-0.15} \pm 0.03$ 

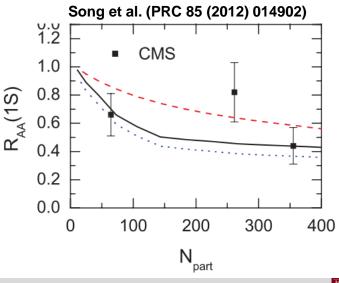
 Probability to obtain measured ratio (or lower) from background fluctuation is less than 1%



PRL 107 (2011) 052302


# $\Upsilon(1S) R_{AA}$




arXiv: 1201.5069 (submitted to JHEP) CMS HIN-10-006

- No obvious y dependence
  0-10% suppressed by factor ~2.2
- Large feed down contribution from excited states ( $\chi_b$ ,  $\Upsilon(2S)$ ,  $\Upsilon(3S)$ )
  - The  $\Upsilon(2S+3S)$  suppression and  $\Upsilon(1S)$  R<sub>AA</sub> are consistent with the suppression of the excited  $\Upsilon$  states only
- STAR  $R_{AA}(\Upsilon(1S + 2S + 3S)) = 0.56 \pm 0.21^{+0.08}_{-0.16}$  (arXiv: 1109.3891)
  - $\text{CMS } R_{AA} \left( \Upsilon(1S + 2S + 3S) \right) = R_{AA} \left( \Upsilon(1S) \right) \times \frac{1 + \Upsilon(2S + 3S) / \Upsilon(1S)|_{PbPb}}{1 + \Upsilon(2S + 3S) / \Upsilon(1S)|_{pp}} = 0.62 \times \frac{1 + 0.24}{1 + 0.78} \approx 0.43$

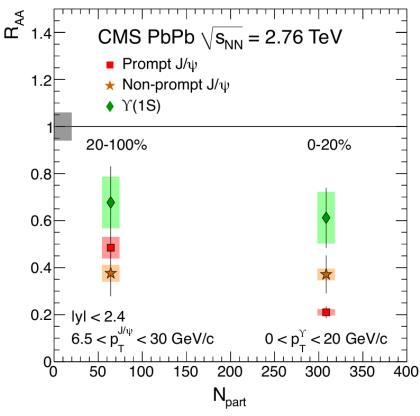
# $\Upsilon(1S) R_{AA}$ & theory comparison



- Lots of activities on the theory side
  - Strickland (PRL 107 (2011) 132301)
  - Rapp et al. (arXiv:1111.6537)
  - Song et al. (PRC 85 (2012) 014902)
  - Brezinski et al. (PLB 707 (2012) 534)



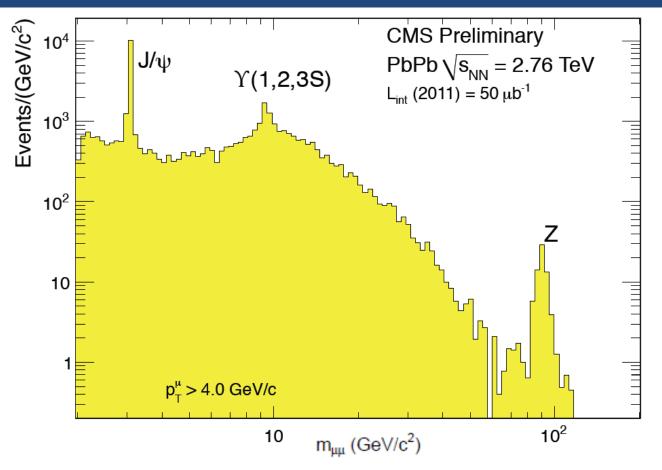





## Summary

- Prompt J/ψ at high p<sub>T</sub> significantly suppressed
- First non-prompt J/ψ observation in heavy ion collisions
  - b-quark energy loss
- Υ(2S+3S) excited states suppressed relative to Υ(1S)
  - This result, together with the  $\Upsilon(1S)$  R<sub>AA</sub>, is consistent with the suppression of the excited  $\Upsilon$  states only

#### Sequential melting accessible with CMS mass resolution








19

#### Outlook



- In 2011 PbPb collisions, integrated luminosity is 150  $\mu$ b<sup>-1</sup> ۲ (Plot contains only 1/3 of total integrated luminosity)
- More detailed quarkonia studies are ongoing!









#### Systematic uncertainties

Table 2: Point-to-point systematic uncertainties on the prompt J/ $\psi$ , non-prompt J/ $\psi$ , and Y(1S) yields measured in PbPb collisions.

|                         | prompt J/ $\psi$ (%) | non-prompt J/ $\psi$ (%) | Y(1S) (%) |
|-------------------------|----------------------|--------------------------|-----------|
| Yield extraction        | 0.5–5.7              | 1.5–14.0                 | 8.7–13.4  |
| Efficiency              | 1.8–3.4              | 2.2-4.2                  | 1.4–2.7   |
| Acceptance              | 0.9–4.2              | 2.0-3.2                  | 1.5 - 2.8 |
| MC Validation           | 13.7                 | 13.7                     | 13.7      |
| Stand-alone $\mu$ reco. | 1.0                  | 1.0                      | 1.0       |
| $T_{AA}$                | 4.3-15.0             | 4.6-8.6                  | 4.3-8.6   |
| Total                   | 15–21                | 15–21                    | 18–20     |

Table 3: Point-to-point systematic uncertainties on the prompt J/ $\psi$ , non-prompt J/ $\psi$ , and Y(1S) yields measured in pp collisions.

|                         | prompt J/ $\psi$ (%) | non-prompt J/ $\psi$ (%) | Y(1S) (%) |
|-------------------------|----------------------|--------------------------|-----------|
| Yield extraction        | 0.8–5.3              | 5.3–16.8                 | 10.0      |
| Efficiency              | 1.6-3.0              | 1.4-2.0                  | 0.4 - 0.9 |
| Acceptance              | 0.9–4.2              | 2.0-3.2                  | 1.5 - 2.8 |
| MC Validation           | 13.7                 | 13.7                     | 13.7      |
| Stand-alone $\mu$ reco. | 1.0                  | 1.0                      | 1.0       |
| Total                   | 14–16                | 15–22                    | 17–18     |





#### A complex production

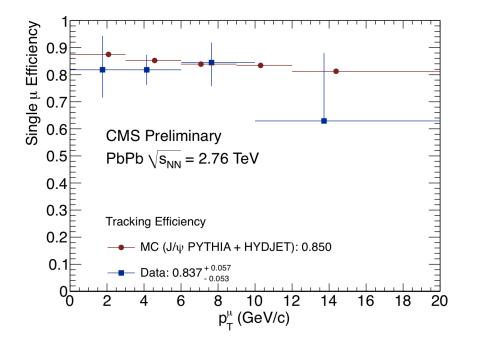
- $J/\psi$  production in pp
  - Production of  $q\bar{q}$  pair (perturbative)
  - Evolution of  $q\bar{q}$  pair into a bound state (non perturbative)
- Different theoretical models of evolution
  - Color singlet model, color evaporation model, NRQCD, FONLL
- Production mechanism not completely understood
- Many effects altering production in nuclear reactions
  - In pA, cold nuclear matter (CNM) effects
    - Initial state: shadowing, parton energy loss
    - Final state:  $c\bar{c}$  dissociation in the medium, final energy loss
  - In AA, hot and dense medium effects






## Separating non-prompt $J/\psi$

• 2D  $(l_{J/\psi}, m_{\mu\mu})$  unbinned maximum likelihood fit is done to separate J/ $\psi$  originating in B hadron decays. In $\mathcal{L} = \sum_{i=1}^{N} \ln F(l_{J/\psi}, m_{\mu\mu})$   $F(l_{J/\psi}, m_{\mu\mu}) = f_{sig}F_{sig}(l_{J/\psi})M_{sig}(m_{\mu\mu}) + (1 - f_{sig})F_{bkg}(l_{J/\psi})M_{bkg}(m_{\mu\mu})$   $F_{sig}(l_{J/\psi}) = f_BF_B(l_{J/\psi}) + (1 - f_B)R(l_{J/\psi})$   $F_B(l_{J/\psi}) = R(l'_{J/\psi} - l_{J/\psi}) \otimes X_{MC}(l'_{J/\psi})$ Resolution function  $R(l_{J/\psi})$ : Prompt J/ $\psi$ 's  $l_{J/\psi}$  distribution. Sum of 4 Gaussians

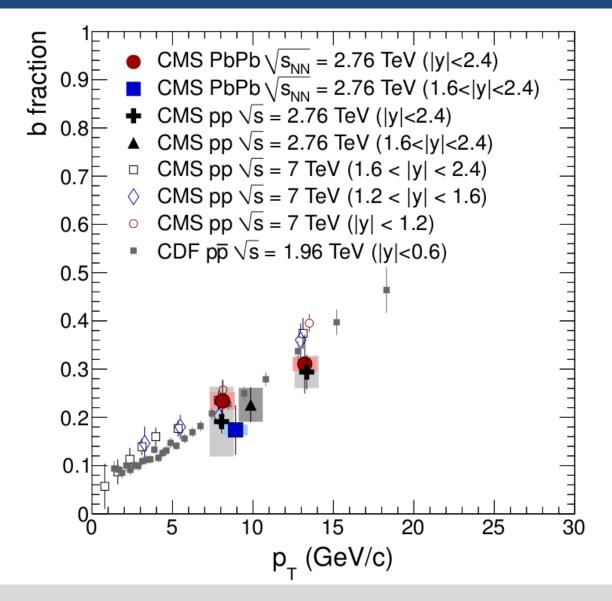

 $F_{bkg}(l_{J/\psi}): \text{ sum of 4 Gaussians}$   $F_{bkg}(l_{J/\psi}): \text{ sum of 3 decay function (for long-lived components) convoluted with X_{MC}(l_{J/\psi})}$   $B \rightarrow J/\psi \text{ MC } l_{J/\psi} \text{ distribution } \checkmark$ 

- 1) Fit to  $m_{\mu\mu}$  to get inclusive J/ $\psi$  yield
- 2) Fit to  $l_{J/\psi}$  in prompt J/ $\psi$  MC sample to get an initial estimation of each parameters of  $R(l_{J/\psi})$
- 3) Fit to  $l_{J/\psi}$  of sidebands of  $m_{\mu\mu}$  with  $F_{bkg}(l_{J/\psi})$
- 4) 2D simultaneous fit with  $F(l_{J/\psi}, m_{\mu\mu})$





#### Tag & Probe




- Tag:
  - High quality muon
- Probe:
  - Track in the muon station
- Passing Probe:
  - Probe that is also reconstructed as global muon (i.e. with a track in the Si-tracker)
- Reconstruct J/ψ peak in passing probe-tag pairs and in failing probe-tag pairs
- Simultaneous fit to passing and failing probes allows us to measure the efficiency of the inner track reconstruction

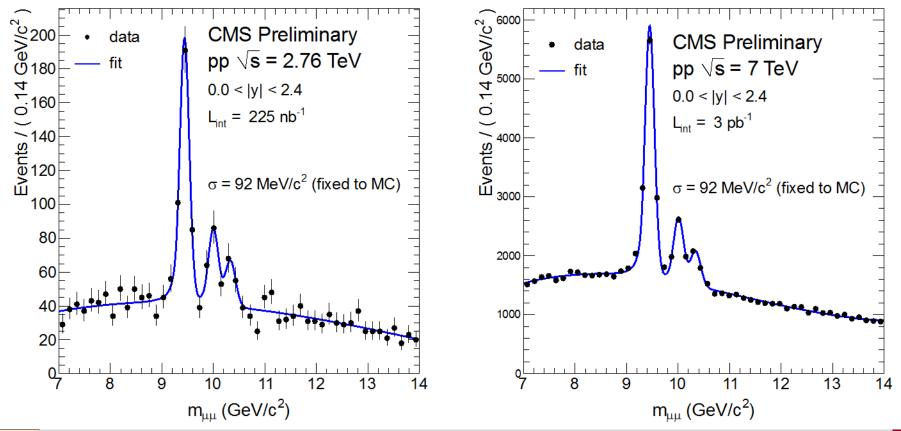




#### **B**-fraction







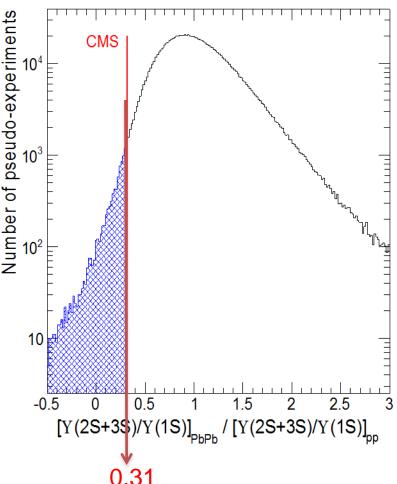

### pp Comparison

Same pp reconstruction, including low  $p_T J/\psi$ Agreement of the  $\Upsilon(2S+3S)/\Upsilon(1S)$  ratio

• pp 2.76 TeV










#### p-value

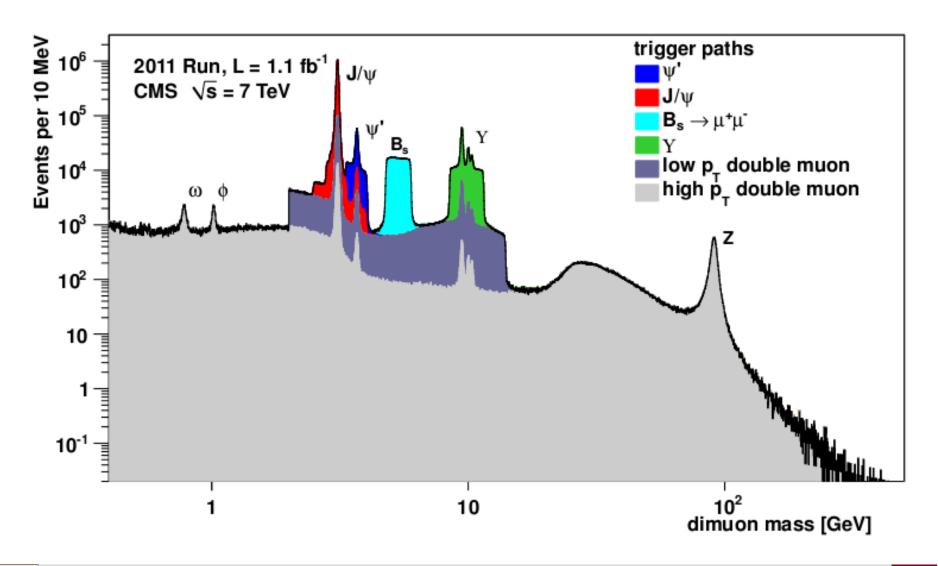
### Could background fluctuation produce a result as extreme as observed in data?

- Generate pseudo-experiments following the *null-hypothesis* (i.e. no suppression)
- Fit pseudo-data samples with nominal fit
- Count fraction of occurrences for which the ratio (taken as test statistic) is same or lower than observed:
  - p-value: 0.9%
  - 2.4σ (1-sided Gaussian test)







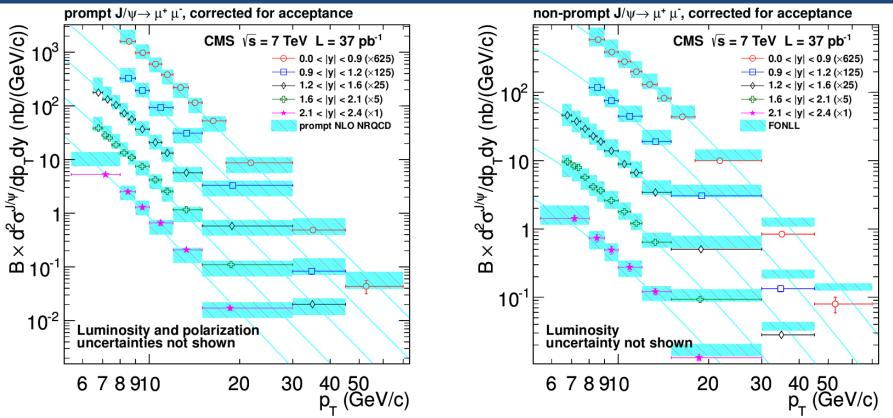

# $\Upsilon$ (2S+3S), $\Upsilon$ (1S) suppression

- Systematic uncertainty : 9.1%
- Statistical uncertainty : 55%
- Null hypothesis testing
  - p-value : 1%
  - Significance of suppression is  $2.4\sigma$
- Large fraction of Y(1S) come from excited states
  - $\sim 50\%$  feed-down from  $\chi_b$  for  $p_T^{Y} > 8$  GeV/c CDF: PRL84 (2000) 2094





#### Dimuons in pp at $\sqrt{s} = 7$ TeV

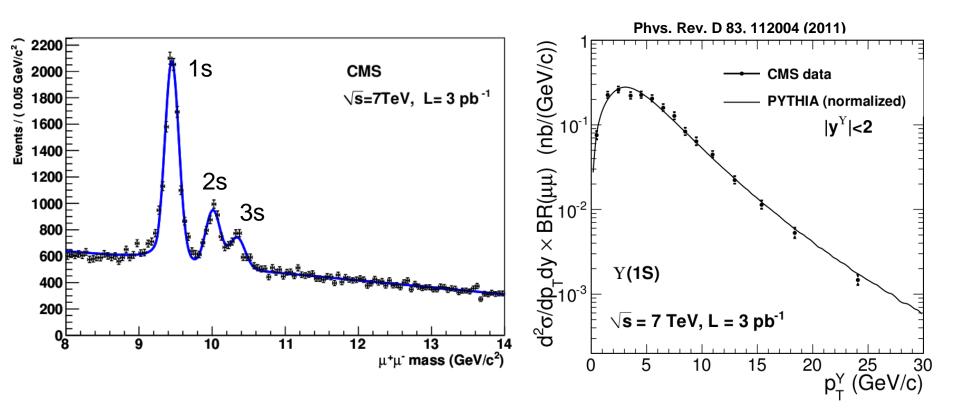




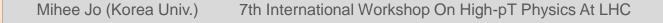



30

## $J/\psi$ in pp at $\sqrt{s} = 7$ TeV




- Prompt J/ $\psi$  production well reproduced
  - NRQCD includes non-prompt production caused by feed-down decays from heavier charmonia
- Non-prompt J/ $\psi$  lie systematically below the FONLL predictions
  - Possibly because of the large uncertainty on the  $B \rightarrow \psi(2S)X$  branching ratio


JHEP 02 (2012) 011



## $\Upsilon$ in pp at $\sqrt{s} = 7$ TeV



- Separation of the 3  $\Upsilon$  states with good mass resolution
- Pythia (LO/CSM+COM) agrees in shape, not in normalization
  - Overestimated by about a factor 2





