## Jet Reconstruction <br> in Heary Ion Collisions

# Liliana Apolinário, Néstor Armesto, Leticia Cunqueiro 

Universidade de Santiago de Compostela
Istituto Nazionale Fisica Nucleare
CENTRA-Instituto Supeior Técnico
Preliminary: work in progress...

High pT Physics at the LHC March $26^{\text {th }}$ - March 29th 2012
Zehntscheune Hanau-Steinheim, Germany

## Introduction

+ Ultra-relativistic heavy-ion physics:
+ Main goal: study matter under extreme conditions of temperature and density
+ Quark-Gluon-Plasma (QGP)
$\uparrow$ Collect evidence for the existence of the QGP and to study its properties
+ Need hard probes well controlled by both experiment and theory


## Introduction

+ Ultra-relativistic heavy-ion physics:
+ Main goal: study matter under extreme conditions of temperature and density
+ Quark-Gluon-Plasma (QGP)
$\uparrow$ Collect evidence for the existence of the QGP and to study its properties
+ Need hard probes well controlled by both experiment and theory
+ Medium-induced modifications to the production of high transverse momentum objects (Jet Quenching)

Spectra of highmomentum particles


Jets


## Jet Obseryables

+ Dijet Asymmetry ratio $\mathrm{A}_{\mathrm{J}}$ :



## Jet Obseryables

+ Dijet Asymmetry ratio $\mathrm{A}_{\mathrm{J}}$ :


$$
\begin{gathered}
A_{J}=\frac{E_{T 1}-E_{T 2}}{E_{T 1}+E_{T 2}} \\
E_{T 2}=\frac{E_{T 1}}{2} \Rightarrow A_{J}=\frac{1}{3}
\end{gathered}
$$



## Jet Obseryables

+ Dijet Asymmetry ratio $\mathrm{A}_{\mathrm{J}}$ :


High jet momentum

$$
\begin{gathered}
A_{J}=\frac{E_{T 1}-E_{T 2}}{E_{T 1}+E_{T 2}} \\
E_{T 2}=\frac{E_{T 1}}{2} \Rightarrow A_{J}=\frac{1}{3}
\end{gathered}
$$

imbalance in dijet
events

Asymmetry increases with increasing centrality

Central geometry


Non-central geometry



## Jet Obseryables

- Dijet Azimuthal correlation:


$$
\Delta \varphi_{12}=\left|\varphi_{1}-\varphi_{2}\right|
$$

Angular deviation hardly changes

Jet Reconstruction in HIC

Central geometry


Non-central geometry

## Our Analysis

+ Main Goal: access the degree of quenching of the data
+ Need to have background parameters (fluctuations) under quantitative control
+ Previous analysis (arXiv:1101.2878) show that fluctuations can play an important role in the dijet momentum imbalance



## Our Analysis

+ Main Goal: access the degree of quenching of the data
+ Need to have background parameters (fluctuations) under quantitative control
+ Previous analysis (arXiv:1101.2878) show that fluctuations can play an important role in the dijet momentum imbalance
+ Our approach: Q-PYTHIA jets embedded in two backgrounds
+1) Parton String Model (PSM) + input spectrum
+2 ) Toy MC + input spectrum


## Our Analysis

+ Main Goal: access the degree of quenching of the data
+ Need to have background parameters (fluctuations) under quantitative control
+ Previous analysis (arXiv:1101.2878) show that fluctuations can play an important role in the dijet momentum imbalance
† Our approach: Q-PYTHIA jets embedded in two backgrounds
+1) Parton String Model (PSM) + input spectrum
+2) Toy MC + input spectrum

+ Study the impact of:
+ Background fluctuations
+ Background subtraction method (ATLAS- and CMS-like)


## Our Analysis

+ Main Goal: access the degree of quenching of the data
+ Need to have background parameters (fluctuations) under quantitative control
+ Previous analysis (arXiv:1101.2878) show that fluctuations can play an important role in the dijet momentum imbalance
+ Our approach: Q-PYTHIA jets embedded in two backgrounds
+1) Parton String Model (PSM) + input spectrum
+2) Toy MC + input spectrum
+ Study the impact of:
+ Background fluctuations
+ Background subtraction method (ATLAS- and CMS-like)
+ Quenching (Q-PYTHIA with different qhat parameters)



## Our Analysis

+ Main Goal: access the degree of quenching of the data
+ Need to have background parameters (fluctuations) under quantitative control
+ Previous analysis (arXiv:1101.2878) show that fluctuations can play an important role in the dijet momentum imbalance
+ Our approach: Q-PYTHIA jets embedded in two backgrounds
+1) Parton String Model (PSM) + input spectrum
+2) Toy MC + input spectrum
+ Study the impact of:
+ Background fluctuations

+ Background subtraction method (ATLAS- and CMS-like)
+ Quenching (Q-PYTHIA with different qhat parameters)
+ Elliptic Flow $\quad \frac{d N}{d \phi} \propto 1+\sum_{n} 2 v_{n} \cos (n \phi) \quad v_{2}=\langle\cos (2 \phi)\rangle$


## Procedure

+ FastJet (ATLAS-like) subtraction method:
+ Jet finding algorithm:
+ FastJet (anti-kt algorithm with $\mathrm{R}=0.4$ )
+ Background estimation:
+ FastJet (kt algorithm with $\mathrm{R}=0.5$ )
+ Background parameters estimated from the full list of jets except the two hardest ones, using jet areas
\& Full stripe in $|n|<2$


## Procedure

+ FastJet (ATLAS-like) subtraction method:
+ Jet finding algorithm:
+ FastJet (anti-kt algorithm with $\mathrm{R}=0.4$ )
+ Background estimation:
+ FastJet (kt algorithm with $\mathrm{R}=0.5$ )
\& Background parameters estimated from the full list of jets except the two hardest ones, using jet areas
+ Full stripe in $|n|<2$
+ CMS-like subtraction method:
+ Same jet finding algorithm
+ Background estimation:
+ Variant of an iterative "noise/pedestal subtraction" technique


## Procedure

+ FastJet (ATLAS-like) subtraction method:
+ Jet finding algorithm:
+ FastJet (anti-kt algorithm with $\mathrm{R}=0.4$ )
+ Background estimation:
+ Jet-based technique
+ CMS-like subtraction method:
+ Same jet finding algorithm
+ Background estimation:
+ Variant of an iterative "noise/pedestal subtraction" technique:


## Procedure

+ FastJet (ATLAS-like) subtraction method:
+ Jet finding algorithm:
+ FastJet (anti-kt algorithm with $\mathrm{R}=0.4$ )
+ Background estimation:
+ Jet-based technique
+ CMS-like subtraction method:
+ Same jet finding algorithm

+ Background estimation:
+ Variant of an iterative "noise/pedestal subtraction" technique:
+ Background estimation in each stripe:
$\downarrow \mathrm{E}_{\mathrm{T}}^{\text {tower* }}=\mathrm{E}_{\mathrm{T}}$ tower $\left.-<\mathrm{E}_{\mathrm{T}}{ }^{\text {tower }}(\mathrm{\eta})\right\rangle-\sigma_{\mathrm{T}}$ tower


## Procedure

## + FastJet (ATLAS-like) subtraction method:

+ Jet finding algorithm:
+ FastJet (anti-kt algorithm with $\mathrm{R}=0.4$ )
+ Background estimation:
+ Jet-based technique
+ CMS-like subtraction method:
+ Same jet finding algorithm
+ Background estimation:
+ Variant of an iterative "noise/pedestal subtraction" technique:
+ Background estimation in each stripe:
$+E_{T}$ tower* $=E_{T}$ tower $-<E_{T}{ }^{\text {tower }}(\eta)>-\sigma_{T}$ tower
+ Jet finding algorithm over the activated towers

[B. Wyslouch]


## Procedure

+ FastJet (ATLAS-like) subtraction method:
+ Jet finding algorithm:
+ FastJet (anti-kt algorithm with $\mathrm{R}=0.4$ )
+ Background estimation:
+ Jet-based technique
+ CMS-like subtraction method:
+ Same jet finding algorithm
+ Background estimation:
+ Variant of an iterative "noise/pedestal subtraction" technique:
+ Background estimation in each stripe:
$+E_{T}$ tower* $=E_{T}$ tower $-<E_{T}{ }^{\text {tower }}(\eta)>-\sigma_{T}$ tower
+ Jet finding algorithm over the activated towers
+ Background estimation excluding previous list of jets

(2) Run IC5 jet finder on subtracted towers
[B. Wyslouch]


## Procedure

## + FastJet (ATLAS-like) subtraction method:

$\uparrow$ Jet finding algorithm:

+ FastJet (anti-kt algorithm with $\mathrm{R}=0.4$ )
+ Background estimation:
+ Jet-based technique
+ CMS-like subtraction method:
+ Same jet finding algorithm
+ Background estimation:
+ Variant of an iterative "noise/pedestal subtraction" technique:
+ Background estimation in each stripe:
$+E_{T}$ tower* $=E_{T}$ tower $-<E_{T}{ }^{\text {tower }}(\eta)>-\sigma_{T}$ tower
+ Jet finding algorithm over the activated towers
+ Background estimation excluding previous list of jets
+ Re-run of jet finding algorithm


[B. Wyslouch]


## Drocedure

Results presented with

## FastJet (ATLAS-like) subtraction method:

+ Jet finding algorithm:
+ FastJet (anti-kt algorithm with $\mathrm{R}=0.4$ )
+ Background estimation:
+ Jet-based technique
+CMS-like subtraction method:
+ Same jet finding algorithm
+ Background estimation:
+ Variant of an iterative "noise/pedestal subtraction" technique:
+ Background estimation in each stripe:
$+E_{T}$ tower* $=E_{T}$ tower $-<E_{T}{ }^{\text {tower }}(\eta)>-\sigma_{T}$ tower
+ Jet finding algorithm over the activated towers
+ Background estimation excluding previous list of jets

[B. Wyslouch]

CMS-like subtraction method: Work in progress...

## 1) Q -PYTHIA + PSM

## + Input spectra + Heavy ion background



+ Heavy ion background = PSM events (arXiv:hep-ph/0103060v1)
+2 types of background:
+ No-hard: without mini-jets $\left(\mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta} \sim 800\right)$
+ Hard: with mini-jets $\left(\mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta} \sim 1600\right)$

$$
\text { ALICE: } \mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta} \sim 1600
$$



## 1) Q -PYTHIA + PSM



Quenching makes the distribution flatter



## 1) Q -PYTHIA + PSM



Quenching makes the distribution flatter Angular deviation slightly broader




## 1) Q -PYTHIA + PSM



Quenching makes the distribution flatter $\downarrow$ Angular deviation slightly broader $\boldsymbol{x}$

Not enough to describe the data...




## 2) Toy Model

+ Input Spectra
+ Q-PYTHIA pp events ( $\mathrm{N}_{\text {coll }}+$ HYDJET profile; qhat $=0$ standard PYTHIA)
+ HIC Background
+ Simulate particles according to a thermal spectrum



## 2) Tox Model

+ Input Spectra
+ Q-PYTHIA pp events ( $\mathrm{N}_{\text {coll }}+$ HYDJET profile; qhat=0 standard PYTHIA)
$\uparrow$ HIC Background
+ Simulate particles according to a thermal spectrum

Soft part of the spectrum
Parameterized as:

$$
\mathrm{e}^{-\mathrm{P}_{\mathrm{T}} / \mathrm{T}}
$$

## 2) Tox Model

## + Input Spectra

\& Q-PYTHIA pp events ( $\mathrm{N}_{\text {coll }}+$ HYDJET profile; qhat=0 standard PYTHIA)
† HIC Background

+ Simulate particles according to a thermal spectrum
+ By continuity, the spectrum can be parameterized as $f\left(p_{T}\right)$ :
+ Can control the number of background particles ( $n$ )

$\mathrm{T}=$ Temperature a=QCD exponent
$\mathrm{n}=$ Number of particles


## 2) Tox Model

## Thermal Model:

+ Map between $(\mathrm{T}, \mathrm{n}) \longleftrightarrow(\rho, \sigma)$

$$
\begin{aligned}
& \mathrm{T}=0.5 \text { : } \\
& \langle\sigma\rangle=8.08 \\
& \text { < } \rho>=56.95 \\
& \text { < } \sigma>\text { / }\langle\rho>=0.14 \\
& \mathrm{T}=0.8 \text { : } \\
& \langle\sigma\rangle=16.02 \\
& <\rho>=148.98 \\
& \langle\sigma\rangle /\langle\rho\rangle=0.11 \\
& \mathrm{~T}=1.5 \text { : } \\
& \langle\sigma\rangle=33.37 \\
& \langle\rho\rangle=371.55 \\
& \langle\sigma>|<\rho>=0.09
\end{aligned}
$$




Increasing T represents an increase in both $\rho$ and $\sigma$

## 2) Tox Model

## Thermal Model:

+ Map between $(\mathrm{T}, \mathrm{n}) \longleftrightarrow(\rho, \sigma)$

$$
\begin{aligned}
& \mathrm{n}=1500 \text { : } \\
& \text { <o> = } 14.44 \\
& <\rho>=124.23 \\
& \text { < } \sigma>\mid<\rho>=0.12 \\
& \mathrm{n}=1800 \text { : } \\
& \langle\sigma\rangle=16.02 \\
& \langle\rho\rangle=148.98 \\
& \text { < } \sigma>/<\rho>=0.11 \\
& \mathrm{n}=2100 \text { : } \\
& \langle\sigma\rangle=17.52 \\
& \langle\rho\rangle=173.74 \\
& \langle\sigma\rangle \mid\langle\rho\rangle=0.10
\end{aligned}
$$



For a fixed $T$, a change in $n$ accounts for a change in $\rho$, keeping $\sigma$ almost constant

# 2) Toy Model 

Studying the influence of the background level and fluctuations

## 2) Tox Model

+ Impact of $\rho$ :




## 2) Tox Model

+ Impact of $\rho$ :



## 2) Tox Model

+ Impact of $\sigma$ :



## 2) Tox Model

## + Impact of $\sigma$ :

Difference in $\rho$ but also in $\sigma$



## 2) Toy Model <br> Influence of quenching

## 2) Tox Model

## + Impact of qhat:

+ Relatively small effect in the angular correlation:



## 2) Tox Model

## + Impact of qhat:

+ Relatively small effect in the angular correlation:
+ Higher effect in the dijet momentum asymmetry with increasing medium fluctuations:




$$
\begin{gathered}
\frac{d N}{d \phi} \propto 1+\sum_{n} 2 v_{n} \cos (n \phi) \\
v_{2}=<\cos (2 \phi)>
\end{gathered}
$$

## 2) Toy Model

Dependency with an elliptic flow component

## 2) Tox Model

+ Impact of $\mathrm{v}_{2}$ (in a high fluctuating medium):


Introduction of a $v_{2}$ component increase the fluctuations by a large amount! But the dijet momentum asymmetry decreases... Angular correlation becomes broader

## 2) Toy Model

+ Impact of $\mathrm{v}_{2}$ :
+ Homogenous medium:
$+\mathrm{Aj} \sim 0$



## 2) Toy Model

+ Impact of $\mathrm{v}_{2}$ :
+ Homogenous medium:
$+\mathrm{Aj} \sim 0$
+ Fluctuating medium:
+ Random fluctuations
+Aj increases



## 2) Toy Model

+ Impact of $\mathrm{v}_{2}$ :
+ Homogenous medium:
$+\mathrm{Aj} \sim 0$

+ Fluctuating medium:
+ Random fluctuations
+Aj increases

† Fluctuating medium with flow:
+ Fluctuations are symmetric!
+ Aj decreaases
+ Angular deviation change


## 2) Tox Model

+ Impact of $\mathrm{v}_{2}$ (in a moderate fluctuating medium):



Need more $v_{2}$ to get the same effect...

## Conclusions

+ Dijet energy-momentum imbalance seems to indicate strong medium effects
+ Softer modification of the angular correlation


## Conclusions

+Dijet energy-momentum imbalance seems to indicate strong medium effects

+ Softer modification of the angular correlation
+ Background fluctuations seems to play an important role on the modification of the observables features:
(arXiv:1112.6021, 1101.2878, 1103.1853):
+ Local fluctuations may change the distribution in the same direction than data
† Quenching effects are more visible with increasing fluctuations
$+v_{2}$ seems to have a strong effect on Aj and angular distributions


## Conclusions

+Dijet energy-momentum imbalance seems to indicate strong medium effects

+ Softer modification of the angular correlation
+ Background fluctuations seems to play an important role on the modification of the observables features:
(arXiv:1112.6021, 1101.2878, 1103.1853):
+ Local fluctuations may change the distribution in the same direction than data
† Quenching effects are more visible with increasing fluctuations
$+\mathrm{v}_{2}$ seems to have a strong effect on Aj and angular distributions
+ Need to understand what part of the observed effect is related to background fluctuations and what is caused by quenching (other energy loss mechanism?)


## Conclusions

+Dijet energy-momentum imbalance seems to indicate strong medium effects

+ Softer modification of the angular correlation
+ Background fluctuations seems to play an important role on the modification of the observables features:
(arXiv:1112.6021, 1101.2878, 1103.1853):
+ Local fluctuations may change the distribution in the same direction than data
† Quenching effects are more visible with increasing fluctuations
$+\mathrm{v}_{2}$ seems to have a strong effect on Aj and angular distributions
+ Need to understand what part of the observed effect is related to background fluctuations and what is caused by quenching (other energy loss mechanism?)
+ On-going work...


## Thank You!

## Backup Slides

## 1) $Q-P Y T H I A+P S M$

+ Input spectra + Heavy ion background
+ Input spectra= Q-PYTHIA pp events ( $\sqrt{\mathrm{s}}=2.76 \mathrm{TeV}$ )
+ Heavy ion background = PSM events (arXiv:hep-ph/0103060v1)
+2 types of background:
+ No-hard: without mini-jets $\left(\mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta} \sim 800\right)$
+ Hard: with mini-jets $\left(\mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \mathrm{\eta} \sim 1600\right)$
+ Jet Profile:



## 2) Tox Model

+ Input Spectra
+ Q-PYTHIA pp events ( $\mathrm{N}_{\text {coll }}+$ +HYDJET profile; qhat $=0$ standard PYTHIA)
+ HIC Background
+ Simulate particles according to a thermal spectrum
+ By continuity, the spectrum can be parameterized as $f\left(p_{T}\right)$ :
+ Can control the number of background particles (n)
+ Jet Profile:



## 2) Toy Model

$$
+ \text { Impact of } v_{2} \text { : }
$$

+ Correlation between $\mathrm{A}_{\mathrm{j}}$ and jet angles:



## 2) Toy Model

## + Impact of $\mathrm{v}_{2}$ :

+ Correlation between $\mathrm{A}_{\mathrm{j}}$ and angular deviation:

$\mathrm{v} 2=0.05$

$\mathrm{v} 2=0.15$



## On-going work

Testing differences in background subtraction methods:

+ Moderate fluctuating background


Both methods react in the same way to quenching

## On-going work

## Testing differences in background subtraction methods:

+ Moderate fluctuating scenario


But has an opposite behavior to fluctuations...

