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FIG. 10: (top) Asymmetry distribution as a function of centrality for R = 0.4 jets (middle) Asymmetry distribution as
a function of centrality for R = 0.2 jets (bottom) ∆φ distribution for R = 0.4 jets.
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FIG. 9. (Color online) Fraction of events with !φ12 > 3.026 as a
function of Npart, among events with pT,1 > 120 GeV/c and pT,2 >

50 GeV/c. The result for reconstructed PYTHIA dijet events (blue
filled star) is plotted at Npart = 2. The other points (from left to right)
correspond to centrality bins of 50%–100%, 30%–50%, 20%–30%,
10%–20%, and 0%–10%. The red squares are for reconstruction of
PYTHIA + DATA events and the filled circles are for the PbPb data,
with statistical (vertical bars) and systematic (brackets) uncertainties.

PbPb results at
√

s
NN

= 2.76 TeV, this discrepancy seen in
the higher-energy pp comparison is included in the systematic
uncertainty estimation. It is important to note that the PYTHIA
simulations include events with more than two jets, which
provide the main contribution to events with large momentum
imbalance or !φ12 far from π .

Figures 8(b)–8(f) show the dijet !φ12 distributions for PbPb
data in five centrality bins, compared to PYTHIA + DATA simula-
tions. The distributions for the four more peripheral bins are in
good agreement with the PYTHIA + DATA reference, especially
for !φ12 ! 2. The three centrality bins spanning 0%–30%
show an excess of events with azimuthally misaligned dijets
(!φ12 " 2), compared with more peripheral events. A similar
trend is seen for the PYTHIA + DATA simulations, although
the fraction of events with azimuthally misaligned dijets is
smaller in the simulation. The centrality dependence of the
azimuthal correlation in PYTHIA + DATA can be understood
as the result of the increasing fake-jet rate and the drop in jet
reconstruction efficiency near the 50 GeV/c threshold from
95% for peripheral events to 88% for the most central events.
In PbPb data, this effect is magnified since low-pT away-side
jets can undergo a sufficiently large energy loss to fall below
the 50 GeV/c selection criteria.

Furthermore, a reduction of the fraction of back-to-back
jets above !φ12 ! 3 is observed for the most central bin.
This modification of the !φ12 distribution as a function of
centrality can be quantified using the fraction RB of dijets
with !φ12 > 3.026, as plotted in Fig. 9, for pT,1 > 120 GeV/c
and pT,2 > 50 GeV/c. The threshold of 3.026 corresponds
to the median of the !φ12 distribution for PYTHIA (without
embedding). The results for both the PbPb data and PYTHIA +
DATA dijets are shown as a function of the reaction centrality,
given by the number of participating nucleons Npart, as
described in Sec. II C. This observable is not sensitive to
the shape of the tail at !φ12 < 2 seen in Fig. 8, but can be
used to measure small changes in the back-to-back correlation
between dijets. A decrease in the fraction of back-to-back jets
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FIG. 10. (Color online) Dijet asymmetry ratio AJ for leading jets of pT,1 > 120 GeV/c, subleading jets of pT,2 >50 GeV/c, and !φ12 >

2π/3 for 7 TeV pp collisions (a) and 2.76 TeV PbPb collisions in several centrality bins: (b) 50%–100%, (c) 30%–50%, (d) 20%–30%,
(e) 10%–20%, and (f) 0%–10%. Data are shown as black points, while the histograms show (a) PYTHIA events and (b)–(f) PYTHIA events
embedded into PbPb data. The error bars show the statistical uncertainties.
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By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry

in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-

nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in

fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse ener-

gies of dijets in opposite hemispheres are observed to become systematically more unbalanced with

increasing event centrality leading to a large number of events which contain highly asymmetric dijets.

This is the first observation of an enhancement of events with such large dijet asymmetries, not observed

in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot,

dense medium.

DOI: 10.1103/PhysRevLett.105.252303 PACS numbers: 25.75.Bh

Collisions of heavy ions at ultrarelativistic energies are
expected to produce an evanescent hot, dense state, with
temperatures exceeding 2" 1012 K, in which the relevant
degrees of freedom are not hadrons but quarks and gluons.
In this medium, high-energy quarks and gluons are ex-
pected to transfer energy to the medium by multiple inter-
actions with the ambient plasma. There is a rich theoretical
literature on in-medium QCD energy loss extending back
to Bjorken, who proposed to look for ‘‘jet quenching’’ in
proton-proton collisions [1]. This work also suggested the
observation of highly unbalanced dijets when one jet is
produced at the periphery of the collision. For comprehen-
sive reviews of recent theoretical work in this area, see
Refs. [2,3].

Single particle measurements made by Relativistic
Heavy Ion Collider experiments established that high
transverse momentum (pT) hadrons are produced at rates
a factor of 5 or more lower than expected by assuming
QCD factorization holds in every binary collision of nu-
cleons in the oncoming nuclei [4,5]. This observation is
characterized by measurements of RAA, the ratio of yields
in heavy ion collisions to proton-proton collisions, divided
by the number of binary collisions. Dihadron measure-
ments also showed a clear absence of back-to-back hadron
production in more central heavy ion collisions [5],
strongly suggestive of jet suppression. The limited rapidity
coverage of the experiment, and jet energies comparable to
the underlying event energy, prevented a stronger conclu-
sion being drawn from these data.

The LHC heavy ion program was foreseen to provide an
opportunity to study jet quenching at much higher jet
energies than achieved at the Relativistic Heavy Ion
Collider. This Letter provides the first measurements of
jet production in lead-lead collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV
per nucleon-nucleon collision, the highest center of mass
energy ever achieved for nuclear collisions. At this energy,
next-to-leading-order QCD calculations [6] predict abun-
dant rates of jets above 100 GeV produced in the pseudor-
apidity region j!j< 4:5 [7], which can be reconstructed by
ATLAS.
The data in this Letter were obtained by ATLAS during

the 2010 lead-lead run at the LHC and correspond to an
integrated luminosity of approximately 1:7 "b#1.
For this study, the focus is on the balance between the

highest transverse energy pair of jets in events where
those jets have an azimuthal angle separation!# ¼ j#1 #
#2j> $=2 to reduce contributions from multijet final
states. In this Letter, jets with !#> $=2 are labeled as
being in opposite hemispheres. The jet energy imbalance is
expressed in terms of the asymmetry AJ:

AJ ¼
ET1 # ET2

ET1 þ ET2
; !#>

$

2
; (1)

where the first jet is required to have a transverse energy
ET1 > 100 GeV, and the second jet is the highest trans-
verse energy jet in the opposite hemisphere with ET2 >
25 GeV. The average contribution of the underlying event
energy is subtracted when deriving the individual jet trans-
verse energies. The event selection is chosen such that the
first jet has high reconstruction efficiency and the second
jet is above the distribution of background fluctuations and
the intrinsic soft jets associated with the collision. Dijet
events are expected to have AJ near zero, with deviations
expected from gluon radiation falling outside the jet cone,

*Full author list given at the end of the article.

Published by The American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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FIG. 10: (top) Asymmetry distribution as a function of centrality for R = 0.4 jets (middle) Asymmetry distribution as
a function of centrality for R = 0.2 jets (bottom) ∆φ distribution for R = 0.4 jets.
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FIG. 9. (Color online) Fraction of events with !φ12 > 3.026 as a
function of Npart, among events with pT,1 > 120 GeV/c and pT,2 >

50 GeV/c. The result for reconstructed PYTHIA dijet events (blue
filled star) is plotted at Npart = 2. The other points (from left to right)
correspond to centrality bins of 50%–100%, 30%–50%, 20%–30%,
10%–20%, and 0%–10%. The red squares are for reconstruction of
PYTHIA + DATA events and the filled circles are for the PbPb data,
with statistical (vertical bars) and systematic (brackets) uncertainties.

PbPb results at
√

s
NN

= 2.76 TeV, this discrepancy seen in
the higher-energy pp comparison is included in the systematic
uncertainty estimation. It is important to note that the PYTHIA
simulations include events with more than two jets, which
provide the main contribution to events with large momentum
imbalance or !φ12 far from π .

Figures 8(b)–8(f) show the dijet !φ12 distributions for PbPb
data in five centrality bins, compared to PYTHIA + DATA simula-
tions. The distributions for the four more peripheral bins are in
good agreement with the PYTHIA + DATA reference, especially
for !φ12 ! 2. The three centrality bins spanning 0%–30%
show an excess of events with azimuthally misaligned dijets
(!φ12 " 2), compared with more peripheral events. A similar
trend is seen for the PYTHIA + DATA simulations, although
the fraction of events with azimuthally misaligned dijets is
smaller in the simulation. The centrality dependence of the
azimuthal correlation in PYTHIA + DATA can be understood
as the result of the increasing fake-jet rate and the drop in jet
reconstruction efficiency near the 50 GeV/c threshold from
95% for peripheral events to 88% for the most central events.
In PbPb data, this effect is magnified since low-pT away-side
jets can undergo a sufficiently large energy loss to fall below
the 50 GeV/c selection criteria.

Furthermore, a reduction of the fraction of back-to-back
jets above !φ12 ! 3 is observed for the most central bin.
This modification of the !φ12 distribution as a function of
centrality can be quantified using the fraction RB of dijets
with !φ12 > 3.026, as plotted in Fig. 9, for pT,1 > 120 GeV/c
and pT,2 > 50 GeV/c. The threshold of 3.026 corresponds
to the median of the !φ12 distribution for PYTHIA (without
embedding). The results for both the PbPb data and PYTHIA +
DATA dijets are shown as a function of the reaction centrality,
given by the number of participating nucleons Npart, as
described in Sec. II C. This observable is not sensitive to
the shape of the tail at !φ12 < 2 seen in Fig. 8, but can be
used to measure small changes in the back-to-back correlation
between dijets. A decrease in the fraction of back-to-back jets
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FIG. 10. (Color online) Dijet asymmetry ratio AJ for leading jets of pT,1 > 120 GeV/c, subleading jets of pT,2 >50 GeV/c, and !φ12 >

2π/3 for 7 TeV pp collisions (a) and 2.76 TeV PbPb collisions in several centrality bins: (b) 50%–100%, (c) 30%–50%, (d) 20%–30%,
(e) 10%–20%, and (f) 0%–10%. Data are shown as black points, while the histograms show (a) PYTHIA events and (b)–(f) PYTHIA events
embedded into PbPb data. The error bars show the statistical uncertainties.
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By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry

in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-

nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in

fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse ener-

gies of dijets in opposite hemispheres are observed to become systematically more unbalanced with

increasing event centrality leading to a large number of events which contain highly asymmetric dijets.

This is the first observation of an enhancement of events with such large dijet asymmetries, not observed

in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot,

dense medium.

DOI: 10.1103/PhysRevLett.105.252303 PACS numbers: 25.75.Bh

Collisions of heavy ions at ultrarelativistic energies are
expected to produce an evanescent hot, dense state, with
temperatures exceeding 2" 1012 K, in which the relevant
degrees of freedom are not hadrons but quarks and gluons.
In this medium, high-energy quarks and gluons are ex-
pected to transfer energy to the medium by multiple inter-
actions with the ambient plasma. There is a rich theoretical
literature on in-medium QCD energy loss extending back
to Bjorken, who proposed to look for ‘‘jet quenching’’ in
proton-proton collisions [1]. This work also suggested the
observation of highly unbalanced dijets when one jet is
produced at the periphery of the collision. For comprehen-
sive reviews of recent theoretical work in this area, see
Refs. [2,3].

Single particle measurements made by Relativistic
Heavy Ion Collider experiments established that high
transverse momentum (pT) hadrons are produced at rates
a factor of 5 or more lower than expected by assuming
QCD factorization holds in every binary collision of nu-
cleons in the oncoming nuclei [4,5]. This observation is
characterized by measurements of RAA, the ratio of yields
in heavy ion collisions to proton-proton collisions, divided
by the number of binary collisions. Dihadron measure-
ments also showed a clear absence of back-to-back hadron
production in more central heavy ion collisions [5],
strongly suggestive of jet suppression. The limited rapidity
coverage of the experiment, and jet energies comparable to
the underlying event energy, prevented a stronger conclu-
sion being drawn from these data.

The LHC heavy ion program was foreseen to provide an
opportunity to study jet quenching at much higher jet
energies than achieved at the Relativistic Heavy Ion
Collider. This Letter provides the first measurements of
jet production in lead-lead collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV
per nucleon-nucleon collision, the highest center of mass
energy ever achieved for nuclear collisions. At this energy,
next-to-leading-order QCD calculations [6] predict abun-
dant rates of jets above 100 GeV produced in the pseudor-
apidity region j!j< 4:5 [7], which can be reconstructed by
ATLAS.
The data in this Letter were obtained by ATLAS during

the 2010 lead-lead run at the LHC and correspond to an
integrated luminosity of approximately 1:7 "b#1.
For this study, the focus is on the balance between the

highest transverse energy pair of jets in events where
those jets have an azimuthal angle separation!# ¼ j#1 #
#2j> $=2 to reduce contributions from multijet final
states. In this Letter, jets with !#> $=2 are labeled as
being in opposite hemispheres. The jet energy imbalance is
expressed in terms of the asymmetry AJ:

AJ ¼
ET1 # ET2

ET1 þ ET2
; !#>

$

2
; (1)

where the first jet is required to have a transverse energy
ET1 > 100 GeV, and the second jet is the highest trans-
verse energy jet in the opposite hemisphere with ET2 >
25 GeV. The average contribution of the underlying event
energy is subtracted when deriving the individual jet trans-
verse energies. The event selection is chosen such that the
first jet has high reconstruction efficiency and the second
jet is above the distribution of background fluctuations and
the intrinsic soft jets associated with the collision. Dijet
events are expected to have AJ near zero, with deviations
expected from gluon radiation falling outside the jet cone,

*Full author list given at the end of the article.

Published by The American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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FIG. 10: (top) Asymmetry distribution as a function of centrality for R = 0.4 jets (middle) Asymmetry distribution as
a function of centrality for R = 0.2 jets (bottom) ∆φ distribution for R = 0.4 jets.
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PbPb results at
√

s
NN

= 2.76 TeV, this discrepancy seen in
the higher-energy pp comparison is included in the systematic
uncertainty estimation. It is important to note that the PYTHIA
simulations include events with more than two jets, which
provide the main contribution to events with large momentum
imbalance or !φ12 far from π .

Figures 8(b)–8(f) show the dijet !φ12 distributions for PbPb
data in five centrality bins, compared to PYTHIA + DATA simula-
tions. The distributions for the four more peripheral bins are in
good agreement with the PYTHIA + DATA reference, especially
for !φ12 ! 2. The three centrality bins spanning 0%–30%
show an excess of events with azimuthally misaligned dijets
(!φ12 " 2), compared with more peripheral events. A similar
trend is seen for the PYTHIA + DATA simulations, although
the fraction of events with azimuthally misaligned dijets is
smaller in the simulation. The centrality dependence of the
azimuthal correlation in PYTHIA + DATA can be understood
as the result of the increasing fake-jet rate and the drop in jet
reconstruction efficiency near the 50 GeV/c threshold from
95% for peripheral events to 88% for the most central events.
In PbPb data, this effect is magnified since low-pT away-side
jets can undergo a sufficiently large energy loss to fall below
the 50 GeV/c selection criteria.

Furthermore, a reduction of the fraction of back-to-back
jets above !φ12 ! 3 is observed for the most central bin.
This modification of the !φ12 distribution as a function of
centrality can be quantified using the fraction RB of dijets
with !φ12 > 3.026, as plotted in Fig. 9, for pT,1 > 120 GeV/c
and pT,2 > 50 GeV/c. The threshold of 3.026 corresponds
to the median of the !φ12 distribution for PYTHIA (without
embedding). The results for both the PbPb data and PYTHIA +
DATA dijets are shown as a function of the reaction centrality,
given by the number of participating nucleons Npart, as
described in Sec. II C. This observable is not sensitive to
the shape of the tail at !φ12 < 2 seen in Fig. 8, but can be
used to measure small changes in the back-to-back correlation
between dijets. A decrease in the fraction of back-to-back jets
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024906-10

Central geometry Non-central geometry 

Quenched 
 Jet 

Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead
Collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV with the ATLAS Detector at the LHC

G. Aad et al.*

(ATLAS Collaboration)
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By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry

in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-

nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in

fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse ener-

gies of dijets in opposite hemispheres are observed to become systematically more unbalanced with

increasing event centrality leading to a large number of events which contain highly asymmetric dijets.

This is the first observation of an enhancement of events with such large dijet asymmetries, not observed

in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot,

dense medium.

DOI: 10.1103/PhysRevLett.105.252303 PACS numbers: 25.75.Bh

Collisions of heavy ions at ultrarelativistic energies are
expected to produce an evanescent hot, dense state, with
temperatures exceeding 2" 1012 K, in which the relevant
degrees of freedom are not hadrons but quarks and gluons.
In this medium, high-energy quarks and gluons are ex-
pected to transfer energy to the medium by multiple inter-
actions with the ambient plasma. There is a rich theoretical
literature on in-medium QCD energy loss extending back
to Bjorken, who proposed to look for ‘‘jet quenching’’ in
proton-proton collisions [1]. This work also suggested the
observation of highly unbalanced dijets when one jet is
produced at the periphery of the collision. For comprehen-
sive reviews of recent theoretical work in this area, see
Refs. [2,3].

Single particle measurements made by Relativistic
Heavy Ion Collider experiments established that high
transverse momentum (pT) hadrons are produced at rates
a factor of 5 or more lower than expected by assuming
QCD factorization holds in every binary collision of nu-
cleons in the oncoming nuclei [4,5]. This observation is
characterized by measurements of RAA, the ratio of yields
in heavy ion collisions to proton-proton collisions, divided
by the number of binary collisions. Dihadron measure-
ments also showed a clear absence of back-to-back hadron
production in more central heavy ion collisions [5],
strongly suggestive of jet suppression. The limited rapidity
coverage of the experiment, and jet energies comparable to
the underlying event energy, prevented a stronger conclu-
sion being drawn from these data.

The LHC heavy ion program was foreseen to provide an
opportunity to study jet quenching at much higher jet
energies than achieved at the Relativistic Heavy Ion
Collider. This Letter provides the first measurements of
jet production in lead-lead collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV
per nucleon-nucleon collision, the highest center of mass
energy ever achieved for nuclear collisions. At this energy,
next-to-leading-order QCD calculations [6] predict abun-
dant rates of jets above 100 GeV produced in the pseudor-
apidity region j!j< 4:5 [7], which can be reconstructed by
ATLAS.
The data in this Letter were obtained by ATLAS during

the 2010 lead-lead run at the LHC and correspond to an
integrated luminosity of approximately 1:7 "b#1.
For this study, the focus is on the balance between the

highest transverse energy pair of jets in events where
those jets have an azimuthal angle separation!# ¼ j#1 #
#2j> $=2 to reduce contributions from multijet final
states. In this Letter, jets with !#> $=2 are labeled as
being in opposite hemispheres. The jet energy imbalance is
expressed in terms of the asymmetry AJ:

AJ ¼
ET1 # ET2

ET1 þ ET2
; !#>

$

2
; (1)

where the first jet is required to have a transverse energy
ET1 > 100 GeV, and the second jet is the highest trans-
verse energy jet in the opposite hemisphere with ET2 >
25 GeV. The average contribution of the underlying event
energy is subtracted when deriving the individual jet trans-
verse energies. The event selection is chosen such that the
first jet has high reconstruction efficiency and the second
jet is above the distribution of background fluctuations and
the intrinsic soft jets associated with the collision. Dijet
events are expected to have AJ near zero, with deviations
expected from gluon radiation falling outside the jet cone,

*Full author list given at the end of the article.

Published by The American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.
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FIG. 10: (top) Asymmetry distribution as a function of centrality for R = 0.4 jets (middle) Asymmetry distribution as
a function of centrality for R = 0.2 jets (bottom) ∆φ distribution for R = 0.4 jets.
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to the corresponding PYTHIA simulations using the anti-kT
algorithm for jets based on calorimeter information. PYTHIA
provides a good description of the experimental data, with

slightly larger tails seen in the PYTHIA simulations. A recent
study of azimuthal correlations in pp collisions at 7 TeV
can be found in Ref. [55]. For the PYTHIA comparison to
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Fig. 2 Simulated distribution of AJ and !φ, as obtained when smear-
ing the pt of jets from Pythia 6.4 (DW tune [23]) by an amount σjet.
None of the results in this figure involved jet quenching. Four dif-
ferent σjet values are shown, and for each plot there are results from
Pythia simulations with two different generation cutoffs on the 2 → 2

scattering, pmin
t = 30 GeV and pmin

t = 70 GeV, so as to illustrate
its impact. The results labelled “pp” reference always correspond to
pmin

t = 30 GeV with no smearing. Jet clustering has been performed
with the anti-kt algorithm [25] with R = 0.4, as implemented in FastJet
[26, 27]

Fig. 3 Simulated distribution of AJ and !φ, as obtained when em-
bedding Pythia events in a PbPb background described by HYDJET
1.6. None of the results in this figure involved jet quenching and the
results obtained with HYDJET include a simple calorimeter simula-
tion. Four different centrality regions are shown as indicated in the
plots on the top row. For each plot there are results from Pythia simu-
lations with two different generation cutoffs on the 2 → 2 scattering,

pmin
t = 10 GeV and pmin

t = 70 GeV, so as to illustrate its impact. The
results labelled “pp” reference always correspond to those of Fig. 2.
Jet clustering has been performed with the anti-kt algorithm [25] with
R = 0.4, as implemented in FastJet [26, 27] and the heavy-ion back-
ground subtraction has been performed as described in [18] with the
background density estimated using a StripRange of half-width 0.8
centred on the jet being subtracted
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Fig. 1. Right: “Jet quenching” in a head-on heavy-ion collision: a fast parton traverses the dense plasma created (with
transport coefficient q̂, gluon density dNg/dy and temperature T ), loses energy via “gluonstrahlung” and fragments into a
(quenched) jet [4]. Left: Neutral pion spectrum measured by PHENIX at

√
sNN = 200 GeV in central AuAu (squares) [5],

compared to the (TAA-scaled) spectrum in pp collisions (circles) [6] and to a NLO pQCD calculation (yellow band) [7].

(“gluonstrahlung”): the parton loses energy mainly by medium-induced multiple gluon emis-
sion [10–13]. Jet quenching in AA reactions is characterised by various observable consequences
compared to the same “QCD vacuum” measurements in proton-proton (pp) collisions: (i) sup-
pressed high-pT hadron spectrum (dNAA/d pT ), (ii) unbalanced back-to-back high-pT dihadron
azimuthal correlations (dNpair/dφ), and (iii) modified energy-particle flow (softer hadron spec-
tra, larger multiplicity, increased angular broadening, ...) within the final jets. A detailed review
of these topics can be found in [4], of which a summary is given in the following sections.

2. High-pT single inclusive hadron production

If a hard scattered parton suffers energy loss in a heavy-ion collision, the energy available for
the hadrons issuing from its fragmentation will be reduced and their spectrum depleted compared
to pp collisions. The standard method to quantify the medium effects on the yield of a large-pT
particle produced at rapidity y in a AA reaction is given by the nuclear modification factor:

RAA(pT ,y;b) =
d2NAA/dyd pT

〈TAA(b)〉 × d2σpp/dyd pT
, TAA(b) being the nuclear overlap function at b, (1)

which measures the deviation of AA at impact parameter b from an incoherent superposition of
nucleon-nucleon collisions (RAA = 1). From the measured suppression factor one can determine
various medium properties such as its transport parameter q̂, via 〈∆E〉 ∝ αs 〈q̂〉L2 [11,13], or its
initial gluon density dNg/dy, via ∆E ∝ α3

s CR
1

A⊥
dNg

dy L (for an expanding plasma with original
transverse area A⊥ = πR2

A ≈ 150 fm2 and thickness L) [12]. We summarise the main high-pT
hadroproduction results in pp and AA collisions, and confront them to jet quenching predictions.

(a) Magnitude of the suppression and medium properties. Figure 1 (right) shows the high-pT
π0 spectrum measured at

√
sNN = 200 GeV in central AuAu [5] compared to the pp [6] and NLO

D. d’Enterria / Nuclear Physics A 827 (2009) 356c–364c 357c



ª Main Goal: access the degree of quenching of the data 
ª Need to have background parameters (fluctuations) under 

quantitative control 
ª Previous analysis (arXiv:1101.2878) show that fluctuations can play an 

important role in the dijet momentum imbalance 

ª Our approach: Q-PYTHIA jets embedded in two backgrounds 
ª 1) Parton String Model (PSM) + input spectrum 

ª 2) Toy MC + input spectrum 

ª Study the impact of: 
ª Background fluctuations 

ª Background subtraction method (ATLAS- and CMS-like) 

ª Quenching (Q-PYTHIA with different qhat parameters) 

ª Elliptic Flow 
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ª FastJet (ATLAS-like) subtraction method: 
ª Jet finding algorithm: 

ª FastJet (anti-kt algorithm with R = 0.4) 

ª Background estimation: 
ª FastJet (kt algorithm with R = 0.5) 

ª Background parameters estimated from the full list of jets 
except the two hardest ones, using jet areas 

ª Full stripe in |η|< 2 
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ª FastJet (ATLAS-like) subtraction method: 
ª Jet finding algorithm: 

ª FastJet (anti-kt algorithm with R = 0.4) 

ª Background estimation: 
ª FastJet (kt algorithm with R = 0.5) 

ª Background parameters estimated from the full list of jets 
except the two hardest ones, using jet areas 

ª Full stripe in |η|< 2 

ª CMS-like subtraction method: 
ª Same jet finding algorithm 
ª Background estimation: 

ª Variant of an iterative “noise/pedestal subtraction” technique  
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ª Background estimation: 
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ª FastJet (ATLAS-like) subtraction method: 
ª Jet finding algorithm: 

ª FastJet (anti-kt algorithm with R = 0.4) 

ª Background estimation: 
ª Jet-based technique 

ª CMS-like subtraction method: 
ª Same jet finding algorithm 
ª Background estimation: 

ª Variant of an iterative “noise/pedestal subtraction” 
technique: 
ª Background estimation in each stripe:  

ª ET
tower* = ET

tower - <ET
tower(η)> - σT

tower 

ª Jet finding algorithm over the activated towers 

ª Background estimation excluding previous list of jets 
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ª FastJet (ATLAS-like) subtraction method: 
ª Jet finding algorithm: 

ª FastJet (anti-kt algorithm with R = 0.4) 

ª Background estimation: 
ª Jet-based technique 

ª CMS-like subtraction method: 
ª Same jet finding algorithm 
ª Background estimation: 

ª Variant of an iterative “noise/pedestal subtraction” 
technique: 
ª Background estimation in each stripe:  

ª ET
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tower - <ET
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ª Jet finding algorithm over the activated towers 

ª Background estimation excluding previous list of jets 
ª Re-run of jet finding algorithm 
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CMS-like subtraction method: Work in progress… 

Results presented with 
FastJet subtraction 



ª Input spectra + Heavy ion background 
ª Input spectra= Q-PYTHIA pp events (√s = 2.76 TeV) 

ª Heavy ion background = PSM events (arXiv:hep-ph/0103060v1) 
ª 2 types of background: 

ª No-hard: without mini-jets (dNch/dη  ~ 800)  

ª Hard: with mini-jets (dNch/dη ~ 1600) 
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ª Results (different qhat): 
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Quenching makes the distribution flatter 
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ª Results (different qhat): 

23 Jet Reconstruction in HIC 

Quenching makes the distribution flatter 
Angular deviation slightly broader 

✔
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ª Results (different qhat): 

24 Jet Reconstruction in HIC 

Quenching makes the distribution flatter 
Angular deviation slightly broader  

 
Not enough to describe the data… 
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ª Input Spectra 
ª Q-PYTHIA pp events (Ncoll+HYDJET profile; qhat=0 standard PYTHIA)  

ª HIC Background 
ª Simulate particles according to a thermal spectrum 

25 Jet Reconstruction in HIC 
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ª Input Spectra 
ª Q-PYTHIA pp events (Ncoll+HYDJET profile; qhat=0 standard PYTHIA)  

ª HIC Background 
ª Simulate particles according to a thermal spectrum 

26 Jet Reconstruction in HIC 
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Soft part of the spectrum 
Parameterized as: 

e-p
T
/T 

Hard part of the spectrum 
Parameterized as: 

pT
α 

From perturbative QCD: α=-6 

T=Temperature 
α=QCD exponent 



ª Input Spectra 
ª Q-PYTHIA pp events (Ncoll+HYDJET profile; qhat=0 standard PYTHIA)  

ª HIC Background 
ª Simulate particles according to a thermal spectrum 

ª By continuity, the spectrum can be parameterized as f(pT): 
ª Can control the number of background particles (n) 
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T=Temperature 
α=QCD exponent 

n=Number of particles 

Medium Modified Gluon Splitting Function

Liliana Apolinário

January 20, 2012

1 Medium: two scatterings

f(pT ) =

�
e−pT /T pT ≤ αT

e−α
�

αT
pT

�α
pT > αT

(1)

dN

dφ
∝ 1 +

�

n

2vn cos(nφ) (2)

v2 =< cos(2φ) > (3)

ET2 =
ET1

2
⇒ AJ =

1

3
(4)

1



T = 0.5:  
       <σ> = 8.08 
       <ρ> = 56.95 
       <σ>/<ρ> = 0.14 
T = 0.8:  
       <σ> = 16.02 
       <ρ> = 148.98 
       <σ>/<ρ> = 0.11 
T = 1.5:  
       <σ> = 33.37 
       <ρ> = 371.55 
       <σ>/<ρ> = 0.09 

ª Thermal Model: 
ª Map between (T, n)        (ρ, σ) 

28 Jet Reconstruction in HIC 
Increasing T represents an increase in both ρ and σ 
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n = 1500:  
       <σ> = 14.44 
       <ρ> = 124.23 
       <σ>/<ρ> = 0.12 
n = 1800: 
       <σ> = 16.02 
       <ρ> = 148.98 
       <σ>/<ρ> = 0.11 
n = 2100: 
       <σ> = 17.52 
       <ρ> = 173.74 
       <σ>/<ρ>= 0.10 

For a fixed T, a change in n accounts for a change in ρ, keeping σ 
almost constant 
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ª Thermal Model: 
ª Map between (T, n)        (ρ, σ) 

29 Jet Reconstruction in HIC 



Studying the influence of the background level 
and fluctuations 

30 Jet Reconstruction in HIC 
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ª Impact of ρ: 

31 Jet Reconstruction in HIC 

Mainly, change in ρ 
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ª Impact of ρ: 

32 Jet Reconstruction in HIC 

Mainly, change in ρ 
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Algorithm handles 
this quite well 
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ª Impact of σ: 

33 Jet Reconstruction in HIC 

Difference in ρ 
but also in σ 
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ª Impact of σ: 

34 Jet Reconstruction in HIC 

Difference in ρ 
but also in σ 

Affect the 
asymmetry in the 

same direction than 
data 
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Influence of quenching 
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Fig. 1. Right: “Jet quenching” in a head-on heavy-ion collision: a fast parton traverses the dense plasma created (with
transport coefficient q̂, gluon density dNg/dy and temperature T ), loses energy via “gluonstrahlung” and fragments into a
(quenched) jet [4]. Left: Neutral pion spectrum measured by PHENIX at

√
sNN = 200 GeV in central AuAu (squares) [5],

compared to the (TAA-scaled) spectrum in pp collisions (circles) [6] and to a NLO pQCD calculation (yellow band) [7].

(“gluonstrahlung”): the parton loses energy mainly by medium-induced multiple gluon emis-
sion [10–13]. Jet quenching in AA reactions is characterised by various observable consequences
compared to the same “QCD vacuum” measurements in proton-proton (pp) collisions: (i) sup-
pressed high-pT hadron spectrum (dNAA/d pT ), (ii) unbalanced back-to-back high-pT dihadron
azimuthal correlations (dNpair/dφ), and (iii) modified energy-particle flow (softer hadron spec-
tra, larger multiplicity, increased angular broadening, ...) within the final jets. A detailed review
of these topics can be found in [4], of which a summary is given in the following sections.

2. High-pT single inclusive hadron production

If a hard scattered parton suffers energy loss in a heavy-ion collision, the energy available for
the hadrons issuing from its fragmentation will be reduced and their spectrum depleted compared
to pp collisions. The standard method to quantify the medium effects on the yield of a large-pT
particle produced at rapidity y in a AA reaction is given by the nuclear modification factor:

RAA(pT ,y;b) =
d2NAA/dyd pT

〈TAA(b)〉 × d2σpp/dyd pT
, TAA(b) being the nuclear overlap function at b, (1)

which measures the deviation of AA at impact parameter b from an incoherent superposition of
nucleon-nucleon collisions (RAA = 1). From the measured suppression factor one can determine
various medium properties such as its transport parameter q̂, via 〈∆E〉 ∝ αs 〈q̂〉L2 [11,13], or its
initial gluon density dNg/dy, via ∆E ∝ α3

s CR
1

A⊥
dNg

dy L (for an expanding plasma with original
transverse area A⊥ = πR2

A ≈ 150 fm2 and thickness L) [12]. We summarise the main high-pT
hadroproduction results in pp and AA collisions, and confront them to jet quenching predictions.

(a) Magnitude of the suppression and medium properties. Figure 1 (right) shows the high-pT
π0 spectrum measured at

√
sNN = 200 GeV in central AuAu [5] compared to the pp [6] and NLO

D. d’Enterria / Nuclear Physics A 827 (2009) 356c–364c 357c



ª Impact of qhat: 
ª Relatively small effect in the angular correlation: 
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ª Impact of qhat: 
ª Relatively small effect in the angular correlation: 

ª Higher effect in the dijet momentum asymmetry with 
increasing medium fluctuations: 
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Dependency with an elliptic flow component 
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Medium Modified Gluon Splitting Function

Liliana Apolinário

January 19, 2012
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ª Impact of v2 (in a high fluctuating medium): 

39 Jet Reconstruction in HIC 

σjet = 23.65 

σjet =32.54 

σjet =41.81 

Introduction of a v2 component increase the fluctuations by a large amount! 
But the dijet momentum asymmetry decreases… 

Angular correlation becomes broader 
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ª Impact of v2: 
ª Homogenous medium: 

ª Aj ~ 0 
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ª Impact of v2: 
ª Homogenous medium: 

ª Aj ~ 0 

ª Fluctuating medium: 
ª Random fluctuations 

ª Aj increases 
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ª Impact of v2: 
ª Homogenous medium: 

ª Aj ~ 0 

ª Fluctuating medium: 
ª Random fluctuations 

ª Aj increases 

ª Fluctuating medium with flow: 
ª Fluctuations are symmetric! 

ª Aj decreaases 

ª Angular deviation change 
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ª Impact of v2 (in a moderate fluctuating medium): 

43 Jet Reconstruction in HIC 

σjet = 23.65 

σjet =32.54 

σjet =41.81 

Need more v2 to get the same effect… 
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ª Dijet energy-momentum imbalance seems to indicate strong 
medium effects 
ª Softer modification of the angular correlation 
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ª Dijet energy-momentum imbalance seems to indicate strong 
medium effects 
ª Softer modification of the angular correlation 

ª Background fluctuations seems to play an important role on the 
modification of the observables features:  
(arXiv:1112.6021, 1101.2878, 1103.1853): 

ª Local fluctuations may change the distribution in the same direction 
than data 

ª Quenching effects are more visible with increasing fluctuations 

ª v2 seems to have a strong effect on Aj and angular distributions 
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ª Dijet energy-momentum imbalance seems to indicate strong 
medium effects 
ª Softer modification of the angular correlation 

ª Background fluctuations seems to play an important role on the 
modification of the observables features:  
(arXiv:1112.6021, 1101.2878, 1103.1853): 

ª Local fluctuations may change the distribution in the same direction 
than data 

ª Quenching effects are more visible with increasing fluctuations 

ª v2 seems to have a strong effect on Aj and angular distributions 

ª Need to understand what part of the observed effect is related to 
background fluctuations and what is caused by quenching (other 
energy loss mechanism?) 
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ª Dijet energy-momentum imbalance seems to indicate strong 
medium effects 
ª Softer modification of the angular correlation 

ª Background fluctuations seems to play an important role on the 
modification of the observables features:  
(arXiv:1112.6021, 1101.2878, 1103.1853): 

ª Local fluctuations may change the distribution in the same direction 
than data 

ª Quenching effects are more visible with increasing fluctuations 

ª v2 seems to have a strong effect on Aj and angular distributions 

ª Need to understand what part of the observed effect is related to 
background fluctuations and what is caused by quenching (other 
energy loss mechanism?) 

ª On-going work… 
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ª Input spectra + Heavy ion background 
ª Input spectra= Q-PYTHIA pp events (√s = 2.76 TeV) 

ª Heavy ion background = PSM events (arXiv:hep-ph/0103060v1) 
ª 2 types of background: 

ª No-hard: without mini-jets (dNch/dη  ~ 800)  

ª Hard: with mini-jets (dNch/dη ~ 1600) 

ª Jet Profile: 

50 Jet Reconstruction in HIC 

ρ = pt/area 

ALICE: dNch/dη ~ 1600  
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ª Input Spectra 
ª Q-PYTHIA pp events (Ncoll+HYDJET profile; qhat=0 standard PYTHIA)  

ª HIC Background 
ª Simulate particles according to a thermal spectrum 

ª By continuity, the spectrum can be parameterized as f(pT): 
ª Can control the number of background particles (n) 

ª Jet Profile: 
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ª Impact of v2: 
ª Correlation between Aj and jet angles: 
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ª Impact of v2: 
ª Correlation between Aj and angular deviation: 
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ª Testing differences in background subtraction methods: 
ª Moderate fluctuating background 

54 Jet Reconstruction in HIC 

Both methods react in the same way to quenching 
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ª Testing differences in background subtraction methods: 
ª Moderate fluctuating scenario 

55 Jet Reconstruction in HIC 

But has an opposite behavior to fluctuations… 
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