Coherence and broadening in medium induced gluon radiation

Mauricio Martínez Guerrero

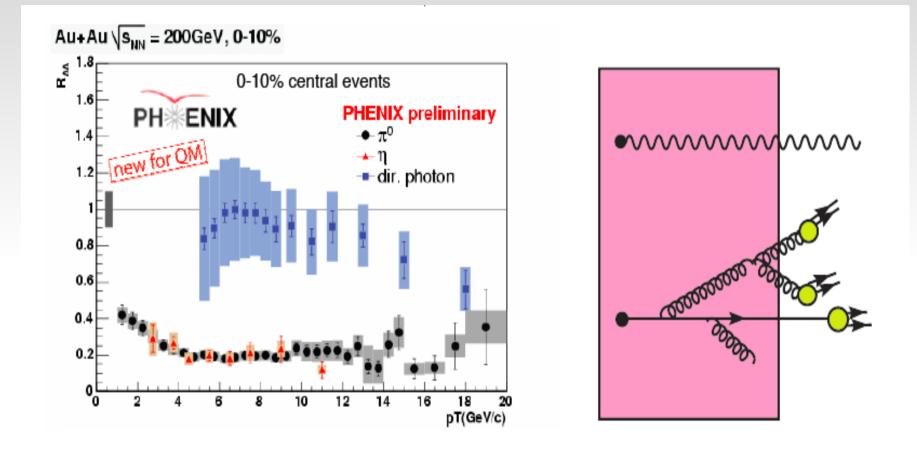
Universidade de Santiago de Compostela Santiago de Compostela, Spain

Collaborators: N. Armesto, H. Ma, Y. Mehtar and C. Salgado Work in progress

High PT Physics at LHC

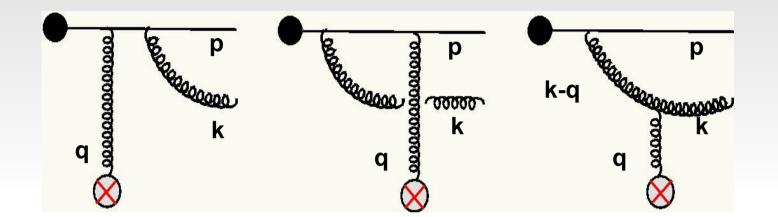
March 26-27 2012, Hanau, Germany

Jet quenching in Heavy Ion Collisions



- Strong suppression of leading particle spectra
- Suppression has been interpreted as a probe of the existence of a deconfined QCD medium !!!

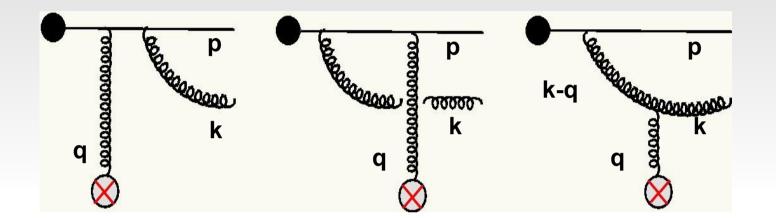
Opacity expansion (Wiedemann, Gyulassy, Levai, Vitev)



Expansion in terms of the density of scattering centers

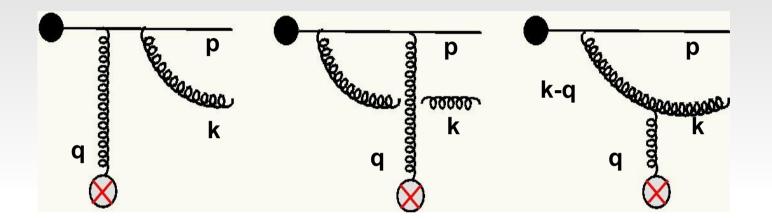
 \Rightarrow (L/ λ)^N

Opacity expansion (Wiedemann, Gyulassy, Levai, Vitev)



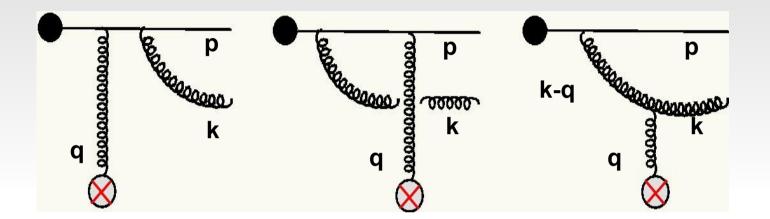
- Expansion in terms of the density of scattering centers $\Rightarrow (L/\lambda)^N$
- Spectrum off a parton created at finite time.

Opacity expansion (Wiedemann, Gyulassy, Levai, Vitev)



- Expansion in terms of the density of scattering centers $\Rightarrow (L/\lambda)^N$
- Spectrum off a parton created at finite time.
- No longitudinal correlations between scattering centers.

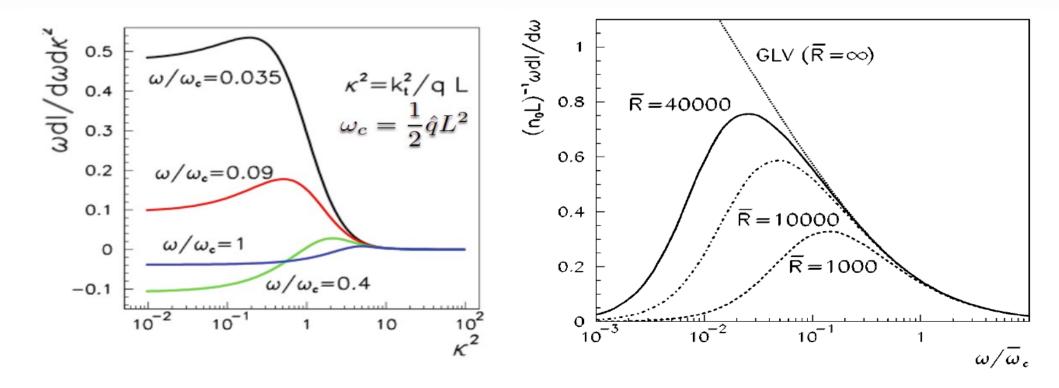
Opacity expansion (Wiedemann, Gyulassy, Levai, Vitev)



- Expansion in terms of the density of scattering centers $\Rightarrow (L/\lambda)^N$
- Spectrum off a parton created at finite time.
- No longitudinal correlations between scattering centers.
- Eikonal Approximation

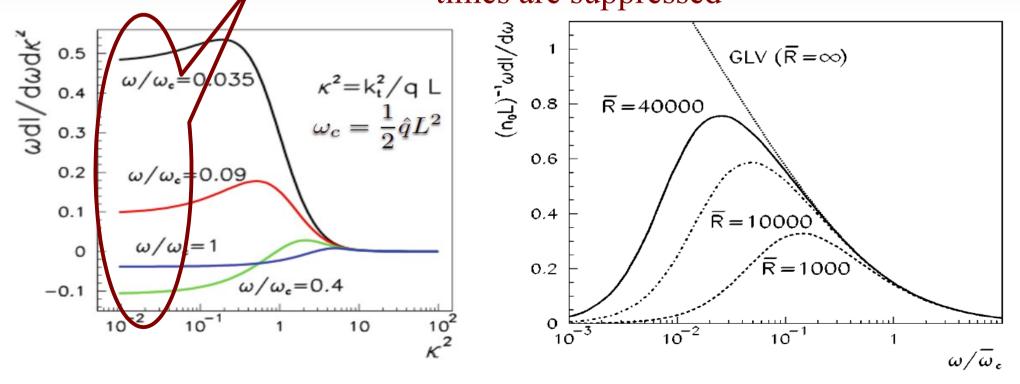
N=1 opacity expansion: GLV spectrum

$$\omega \frac{dN_q^{\text{indep}}}{d\omega \, d^2 \boldsymbol{k}} = \frac{8 \, \alpha_s C_F \, \hat{q}}{\pi} \int_{\mathcal{V}(\boldsymbol{q})} \int_0^{L^+} dx^+ \left(1 - \cos \frac{(\boldsymbol{k} - \boldsymbol{q})^2}{2k^+} x^+\right) \frac{\boldsymbol{k} \cdot \boldsymbol{q}}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2}$$



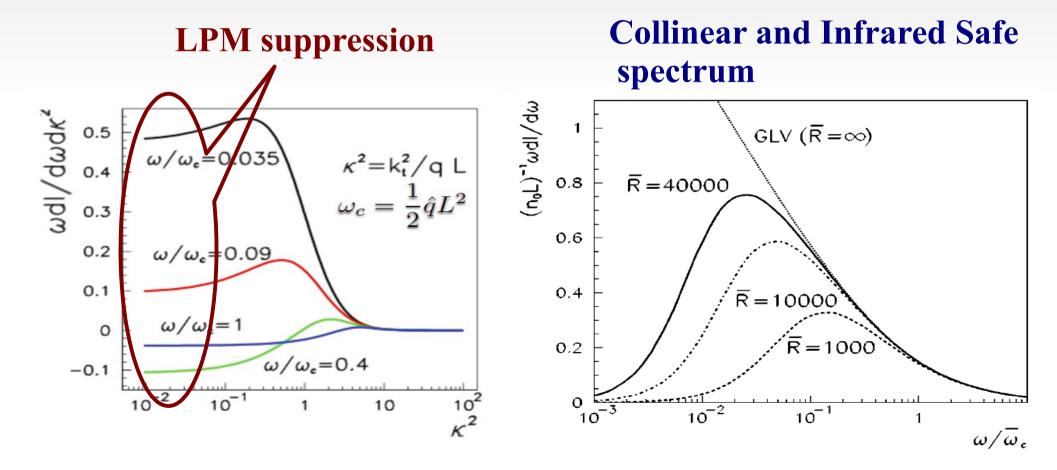
N=1 opacity expansion: GLV spectrum

$$\omega \frac{dN_q^{\text{indep}}}{d\omega \, d^2 \boldsymbol{k}} = \frac{8 \, \alpha_s C_F \, \hat{q}}{\pi} \int_{\mathcal{V}(\boldsymbol{q})} \int_0^{L^+} dx^+ \left(1 - \cos \frac{(\boldsymbol{k} - \boldsymbol{q})^2}{2k^+} x^+\right) \frac{\boldsymbol{k} \cdot \boldsymbol{q}}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2}$$



N=1 opacity expansion: GLV spectrum

$$\omega \frac{dN_q^{\text{indep}}}{d\omega \, d^2 \boldsymbol{k}} = \frac{8 \, \alpha_s C_F \, \hat{q}}{\pi} \int_{\mathcal{V}(\boldsymbol{q})} \int_0^{L^+} dx^+ \left(1 - \cos \frac{(\boldsymbol{k} - \boldsymbol{q})^2}{2k^+} x^+\right) \frac{\boldsymbol{k} \cdot \boldsymbol{q}}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2}$$



N=1 opacity expansion: GLV spectrum

$$\omega \frac{dN_q^{\text{indep}}}{d\omega \, d^2 \boldsymbol{k}} = \frac{8 \,\alpha_s C_F \,\hat{q}}{\pi} \int_{\mathcal{V}(\boldsymbol{q})} \int_0^{L^+} dx^+ \left(1 - \cos \frac{(\boldsymbol{k} - \boldsymbol{q})^2}{2k^+} x^+\right) \frac{\boldsymbol{k} \cdot \boldsymbol{q}}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2}$$

Incoherent Limit ($L \rightarrow \infty$ **) : Probabilistic interpretation**

$$\hat{q} \int_{\mathcal{V}(q)} \frac{k \cdot q}{k^2 (k - q)^2} = \frac{\hat{q}}{2} \int_{\mathcal{V}(q)} \left(-\frac{1}{k^2} + \frac{1}{(k - q)^2} + L^2 \right)$$

Wiedemann (2000)

N=1 opacity expansion: GLV spectrum

$$\omega \frac{dN_q^{\text{indep}}}{d\omega \, d^2 \boldsymbol{k}} = \frac{8 \,\alpha_s C_F \,\hat{q}}{\pi} \int_{\mathcal{V}(\boldsymbol{q})} \int_0^{L^+} dx^+ \left(1 - \cos \frac{(\boldsymbol{k} - \boldsymbol{q})^2}{2k^+} x^+\right) \frac{\boldsymbol{k} \cdot \boldsymbol{q}}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2}$$

Incoherent Limit ($L \rightarrow \infty$ **) : Probabilistic interpretation**

$$\hat{q} \int_{\mathcal{V}(q)} \frac{k \cdot q}{k^2 (k-q)^2} = \frac{\hat{q}}{2} \int_{\mathcal{V}(q)} \left(-\frac{1}{k^2} + \frac{1}{(k-q)^2} + L^2 \right)$$

$$\lim_{L \to \infty} \sum_{m=0}^{N=1} \frac{d^3 \sigma^{(nas)}(m)}{d(\ln x) \, d\mathbf{k}_\perp} = \frac{\alpha_s}{\pi^2} \, N_C \, C_F$$
$$\times \left[(1 - w_1) H(\mathbf{k}_\perp) + n_0 \, L \, \int_{\mathbf{q}_1} H(\mathbf{k}_\perp + \mathbf{q}_{1\perp}) + n_0 \, L \, \int_{\mathbf{q}_1} R(\mathbf{k}_\perp, \mathbf{q}_{1\perp}) \right] \, .$$

Wiedemann (2000)

N=1 opacity expansion: GLV spectrum

$$\omega \frac{dN_q^{\text{indep}}}{d\omega \, d^2 \boldsymbol{k}} = \frac{8 \,\alpha_s C_F \,\hat{q}}{\pi} \int_{\mathcal{V}(\boldsymbol{q})} \int_0^{L^+} dx^+ \left(1 - \cos \frac{(\boldsymbol{k} - \boldsymbol{q})^2}{2k^+} x^+\right) \frac{\boldsymbol{k} \cdot \boldsymbol{q}}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2}$$

Incoherent Limit ($L \rightarrow \infty$ **) : Probabilistic interpretation**

$$\hat{q} \int_{\mathcal{V}(q)} \frac{k \cdot q}{k^2 (k - q)^2} = \frac{\hat{q}}{2} \int_{\mathcal{V}(q)} \left(-\frac{1}{k^2} + \frac{1}{(k - q)^2} + L^2 \right)$$

$$\lim_{L \to \infty} \sum_{m=0}^{N=1} \frac{d^3 \sigma^{(nas)}(m)}{d(\ln x) \, d\mathbf{k}_{\perp}} = \frac{\alpha_s}{\pi^2} N c_F \qquad \begin{array}{l} \text{Hard medium independent emission by} \\ \text{bremsstrahlung which reduces the} \\ \times \left[(1 - w_1) H(\mathbf{k}_{\perp}) + n_0 L \int_{\mathbf{q}_1} H(\mathbf{k}_{\perp} + \mathbf{q}_{1\perp}) \right] \\ + n_0 L \int_{\mathbf{q}_1} R(\mathbf{k}_{\perp}, \mathbf{q}_{1\perp}) \right] . \qquad \begin{array}{l} \text{Wiedemann (2000)} \end{array}$$

N=1 opacity expansion: GLV spectrum

$$\omega \frac{dN_q^{\text{indep}}}{d\omega \, d^2 \boldsymbol{k}} = \frac{8 \,\alpha_s C_F \,\hat{q}}{\pi} \int_{\mathcal{V}(\boldsymbol{q})} \int_0^{L^+} dx^+ \left(1 - \cos \frac{(\boldsymbol{k} - \boldsymbol{q})^2}{2k^+} x^+\right) \frac{\boldsymbol{k} \cdot \boldsymbol{q}}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2}$$

Incoherent Limit ($L \rightarrow \infty$ **) : Probabilistic interpretation**

$$\hat{q} \int_{\mathcal{V}(\mathbf{q})} \frac{\mathbf{k} \cdot \mathbf{q}}{\mathbf{k}^2 (\mathbf{k} - \mathbf{q})^2} = \frac{\hat{q}}{2} \int_{\mathcal{V}(\mathbf{q})} \left(-\frac{1}{\mathbf{k}^2} + \frac{1}{(\mathbf{k} - \mathbf{q})^2} + L^2 \right)$$

$$\lim_{L \to \infty} \sum_{m=0}^{N=1} \frac{d^3 \sigma^{(nas)}(m)}{d(\ln x) \, d\mathbf{k}_\perp} = \frac{\alpha_s}{\pi^2} N \sigma \mathcal{C}_F$$

$$\times \left[(1 - w_1) H(\mathbf{k}_\perp) + n_0 L \int_{\mathbf{q}_1} H(\mathbf{k}_\perp + \mathbf{q}_{1\perp}) + n_0 L \int_{\mathbf{q}_1} R(\mathbf{k}_\perp, \mathbf{q}_{1\perp}) \right].$$

$$+ n_0 L \int_{\mathbf{q}_1} R(\mathbf{k}_\perp, \mathbf{q}_{1\perp}) \right].$$
Wiedemann (2000)

N=1 opacity expansion: GLV spectrum

$$\omega \frac{dN_q^{\text{indep}}}{d\omega \, d^2 \boldsymbol{k}} = \frac{8 \,\alpha_s C_F \,\hat{q}}{\pi} \int_{\mathcal{V}(\boldsymbol{q})} \int_0^{L^+} dx^+ \left(1 - \cos \frac{(\boldsymbol{k} - \boldsymbol{q})^2}{2k^+} x^+\right) \frac{\boldsymbol{k} \cdot \boldsymbol{q}}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2}$$

Incoherent Limit ($L \rightarrow \infty$ **) : Probabilistic interpretation**

$$\hat{q} \int_{\mathcal{V}(\mathbf{q})} \frac{\mathbf{k} \cdot \mathbf{q}}{\mathbf{k}^{2}(\mathbf{k} - \mathbf{q})^{2}} = \frac{\hat{q}}{2} \int_{\mathcal{V}(\mathbf{q})} \left(-\frac{1}{\mathbf{k}^{2}} + \frac{1}{(\mathbf{k} - \mathbf{q})^{2}} + \mathbf{L}^{2} \right)$$

$$\lim_{L \to \infty} \sum_{m=0}^{N=1} \frac{d^{3}\sigma^{(nas)}(m)}{d(\ln x) \, d\mathbf{k}_{\perp}} = \frac{\alpha_{s}}{\pi^{2}} N \sigma \mathcal{C}_{F}$$

$$\times \left[(1 - w_{1})H(\mathbf{k}_{\perp}) + n_{0} L \int_{\mathbf{q}_{1}} H(\mathbf{k}_{\perp} + \mathbf{q}_{1\perp}) \right]$$

$$H_{0} L \int_{\mathbf{q}_{1}} R(\mathbf{k}_{\perp}, \mathbf{q}_{1\perp}) \right].$$
Wiedemann (2000)

 It is assumed that in a multiple gluon cascade, the radiation comes from independent emitters

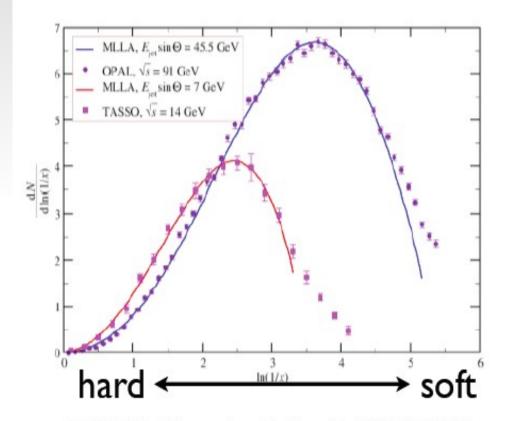
- It is assumed that in a multiple gluon cascade, the radiation comes from independent emitters
 - \Rightarrow No interference between different colored particles in the parton shower

- It is assumed that in a multiple gluon cascade, the radiation comes from independent emitters
 - \Rightarrow No interference between different colored particles in the parton shower
- A missing and fundamental ingredient:

QCD coherence in jets in vacuum

Angular ordering in the parton shower Basseto, Ciafaloni, Marchesini (1982), Fadin (1983), Dokshitzer, Diakonov, Troian (1980)

QCD Coherence and Intrajet physics

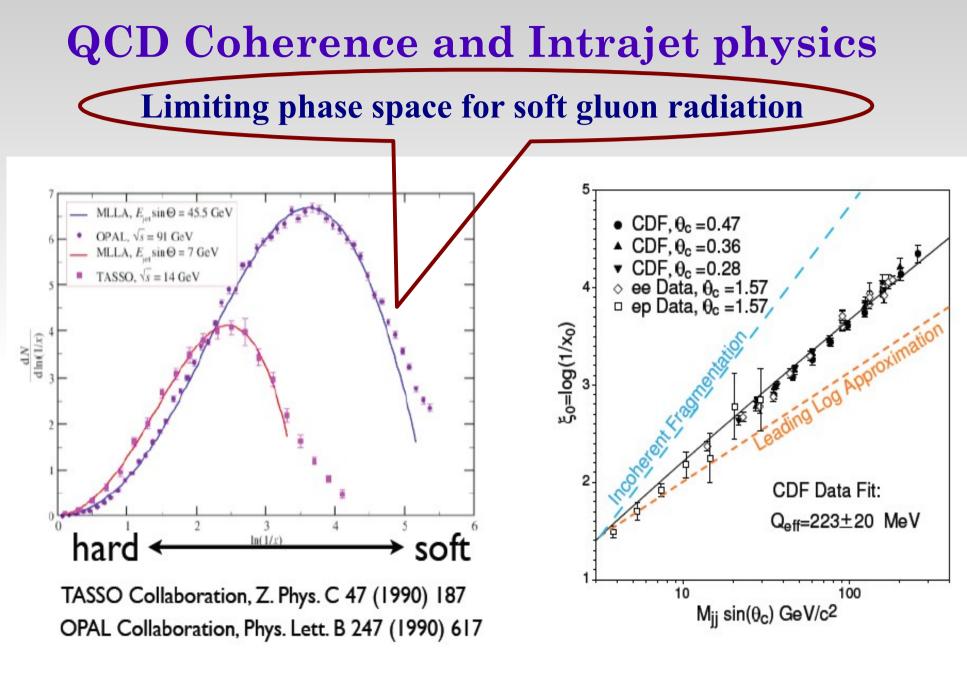


TASSO Collaboration, Z. Phys. C 47 (1990) 187 OPAL Collaboration, Phys. Lett. B 247 (1990) 617

Humpbacked Plateau

 CDF, θ_c =0.47 $CDF, \theta_c = 0.36$ CDF, $\theta_c = 0.28$ ee Data, $\theta_c = 1.57$ ep Data, $\theta_c = 1.57$ ξ₀=log(1/x₀) CDF Data Fit: Q_{eff}=223±20 MeV 100 10 M_{jj} sin(θ_c) GeV/c2

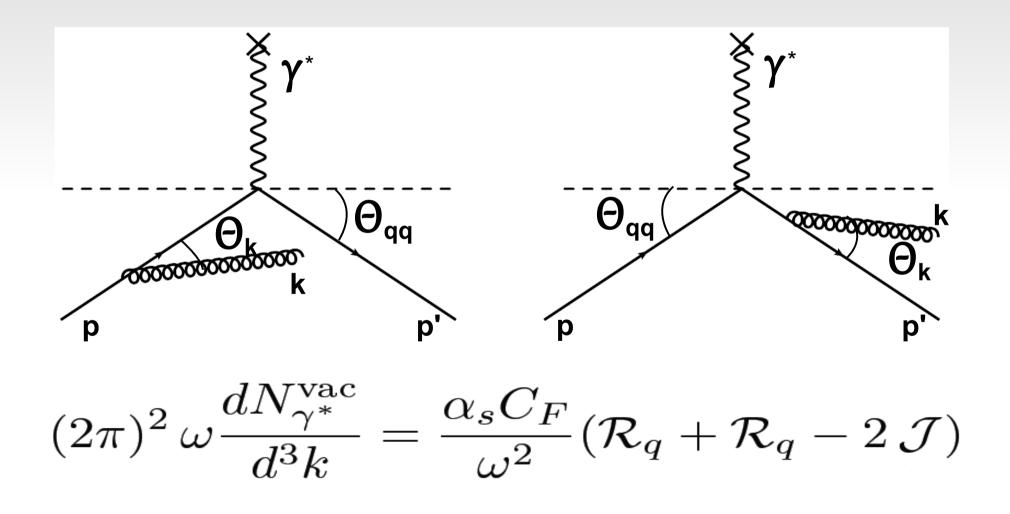
Position of hump



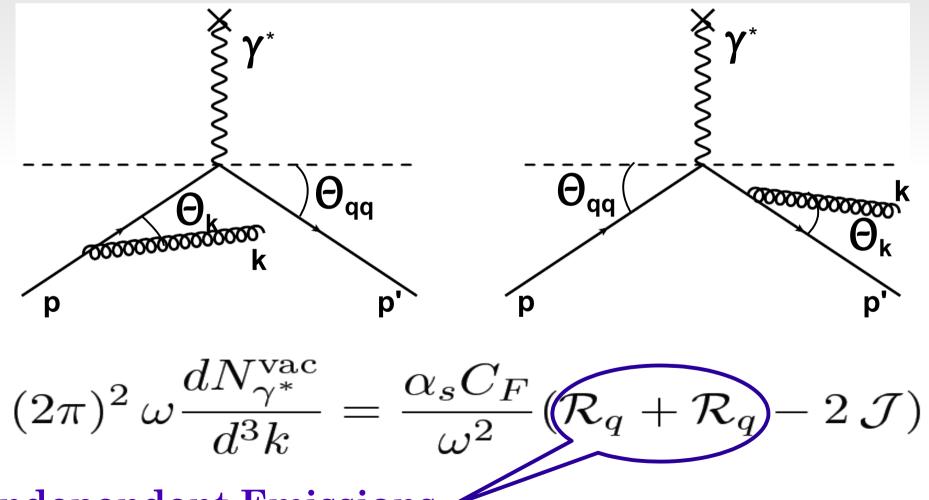
Humpbacked Plateau

Position of hump

Vacuum case: space-like cascade

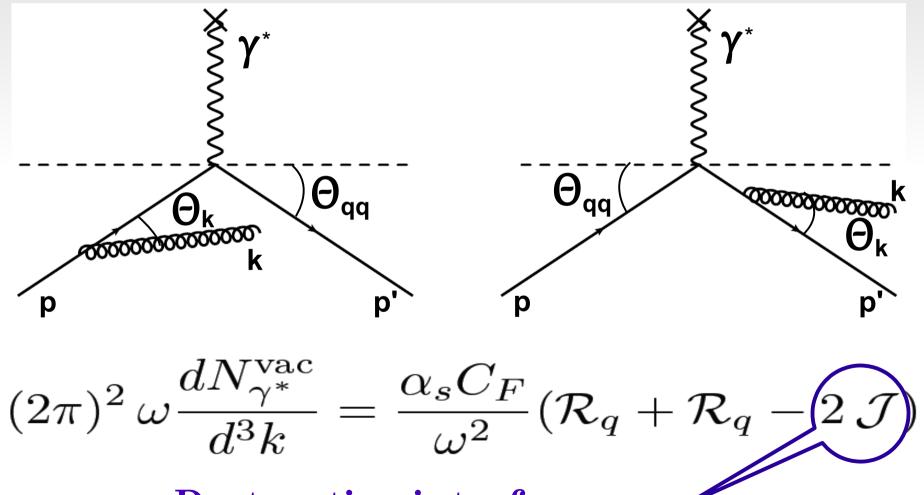


Vacuum case: space-like cascade



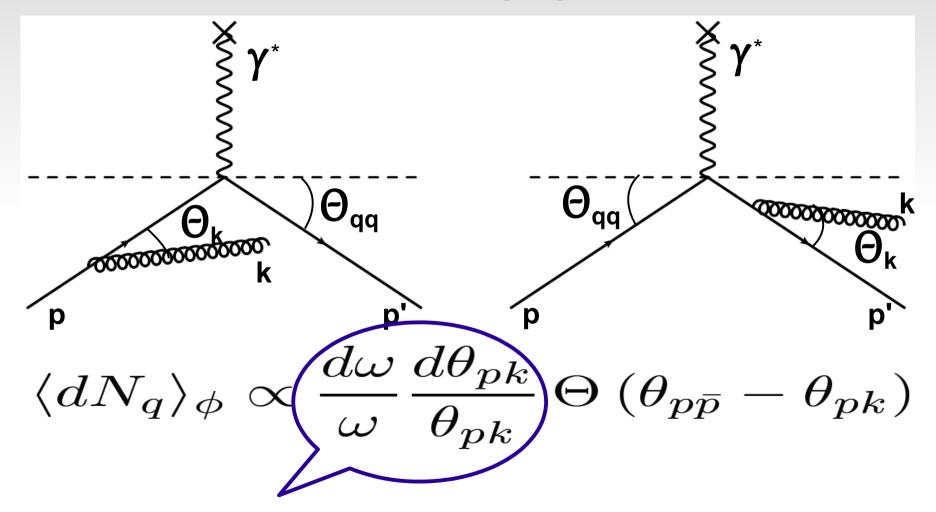
Independent Emissions ·

Vacuum case: space-like cascade



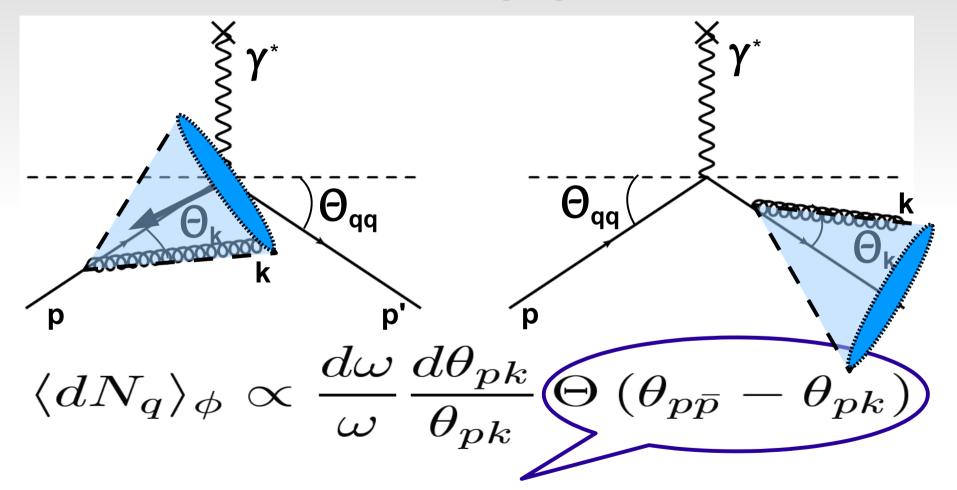
Destructive interferences ·

Vacuum case: double leading log



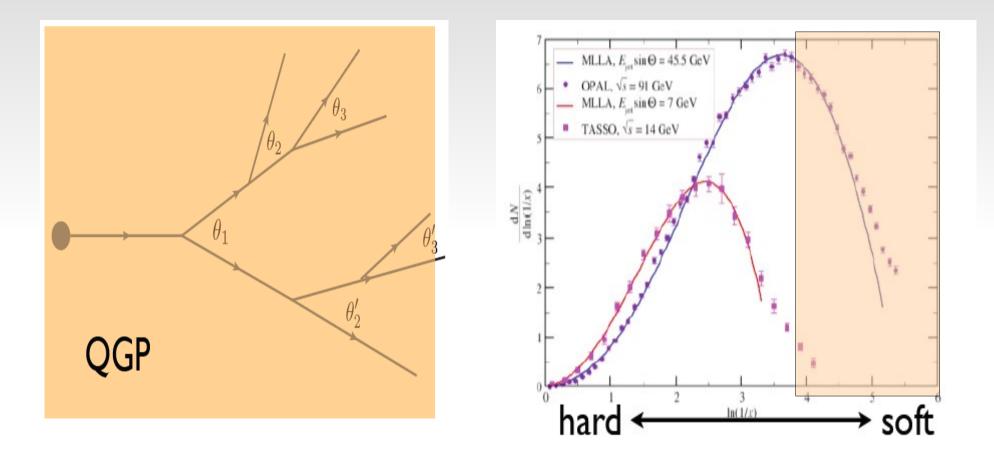
Infrared and collinear divergence

Vacuum case: double leading log



Angular ordering
Large angle suppression due to interference between the emitters

How does the presence of a QCD medium affects QCD coherence in a jet?



Attempts to test coherence in the presence of a QGP: Wiedemann and Borghini, hep-ph/0506218

First steps towards jet calculus in medium: QCD antenna

*** QCD massless antenna in a dilute QGP medium:**

Y. Mehtar-Tani, C. Salgado and K. Tywoniuk, Phys. Rev. Lett. 106 (2011), arXiv:1112.5031.

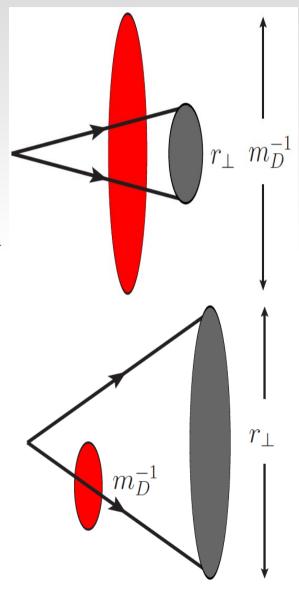
*** QCD Massive antenna in a dilute QGP medium:**

Nestor Armesto, Hao Ma, Y. Mehtai, C. Salgado and K. Tywoniuk, JHEP 1201 (2012) 109.

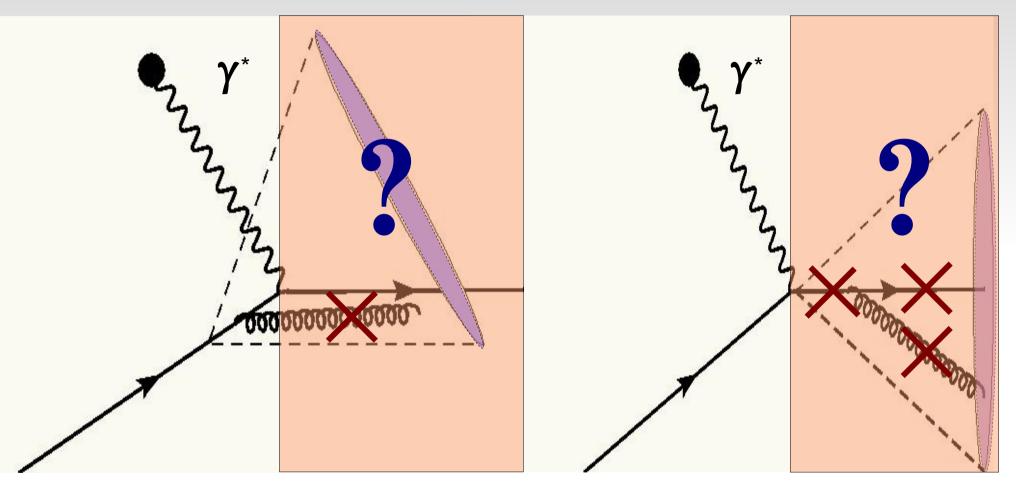
* QCD massless antenna in an opaque QGP medium:

Y. Mehtar-Tani, C. Salgado and K. Tywoniuk, Phys. Lett. B707 (2012) 156).

Y. Mehtar-Tani and K. Tywoniuk, arXiv:1105.1346. J. Casalderrey and E. Iancu, JHEP 1108 (2011).

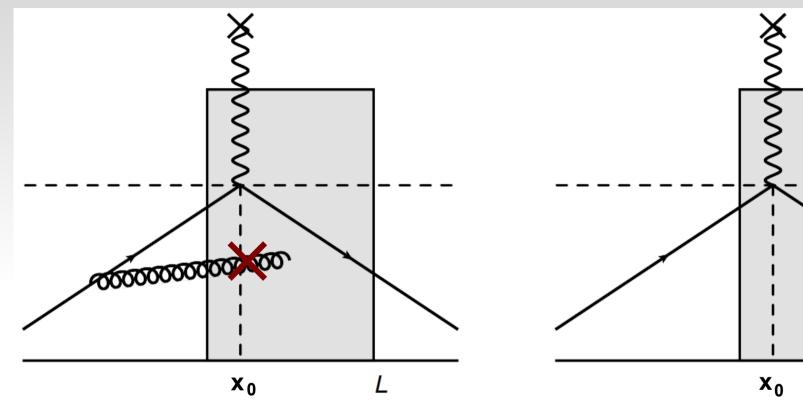


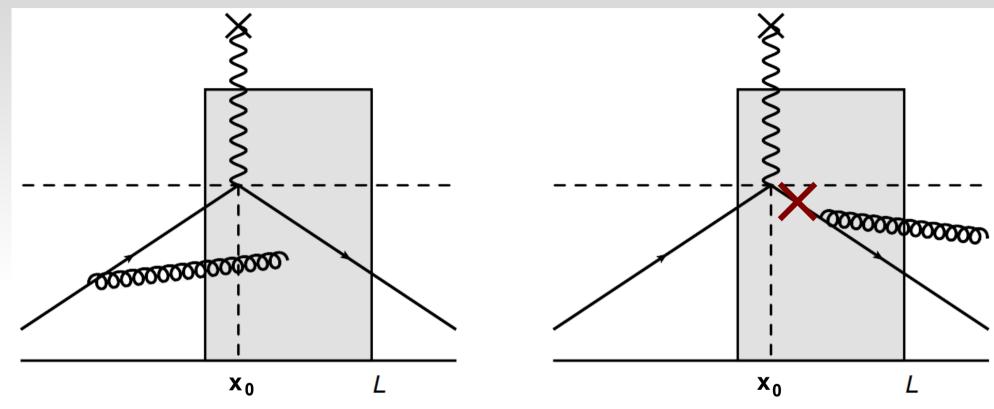
In this talk: Coherence effects on Initial State Radiation in the presence of a QCD medium

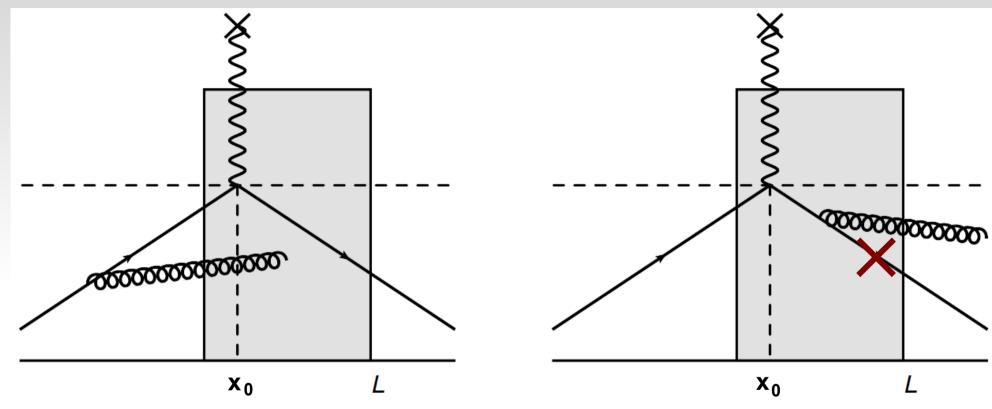


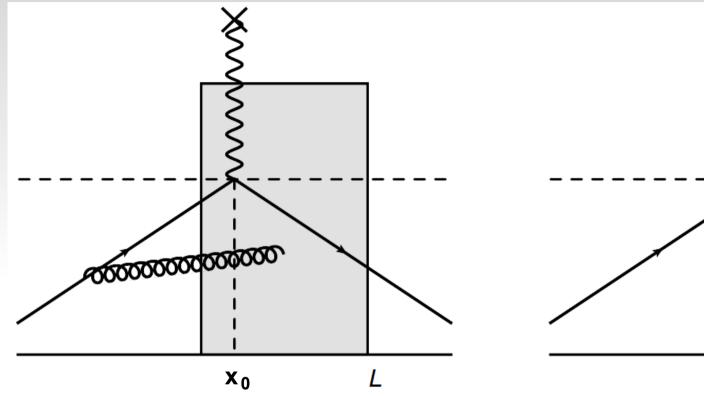
 \Rightarrow How does the presence of a thin plasma affect the interference pattern of the initial state radiation?

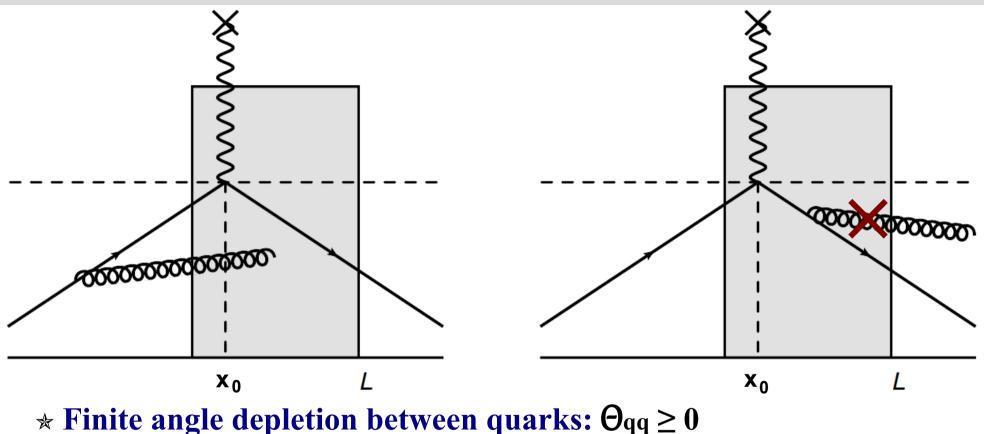
000000000000000000

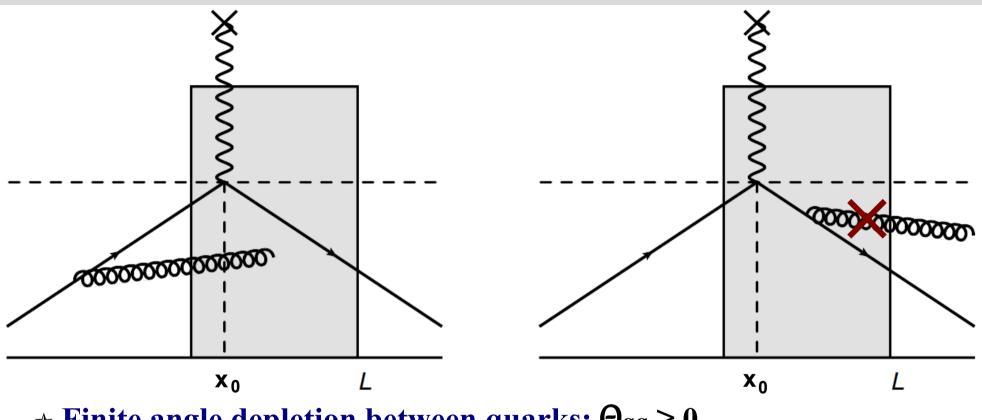






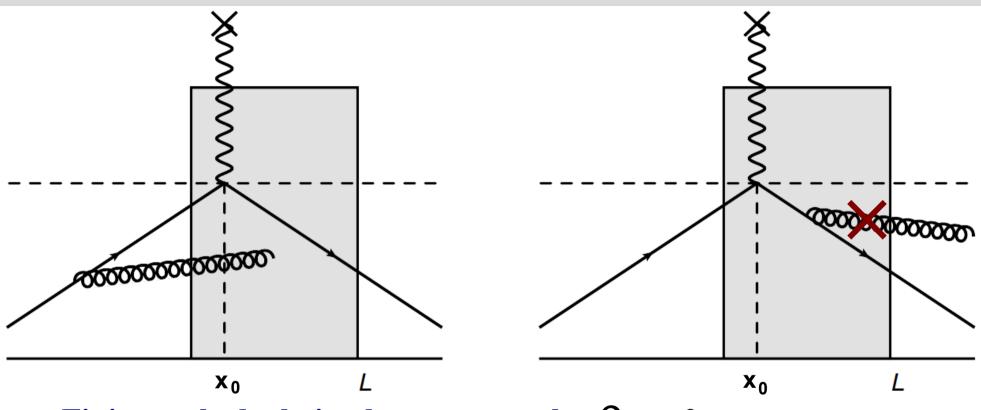






* Finite angle depletion between quarks: $\Theta_{qq} \ge 0$

*** Eikonal approximmation:** E >> w >> kT



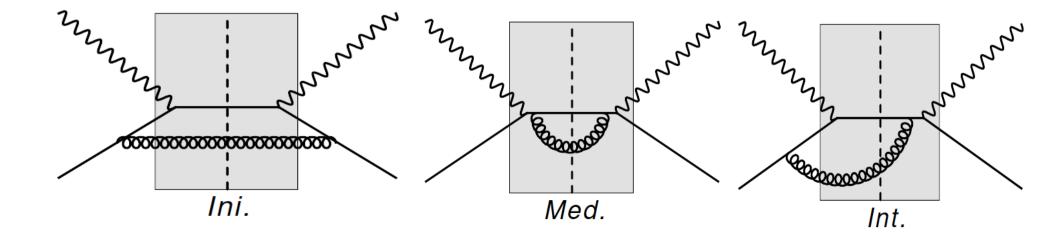
* Finite angle depletion between quarks: $\Theta_{qq} \ge 0$

- *** Eikonal approximmation: E >> w >> k**T
- * The scattering centers (QCD medium) are treated as a classical background field (Yukawa type potential).

Radiative cross section

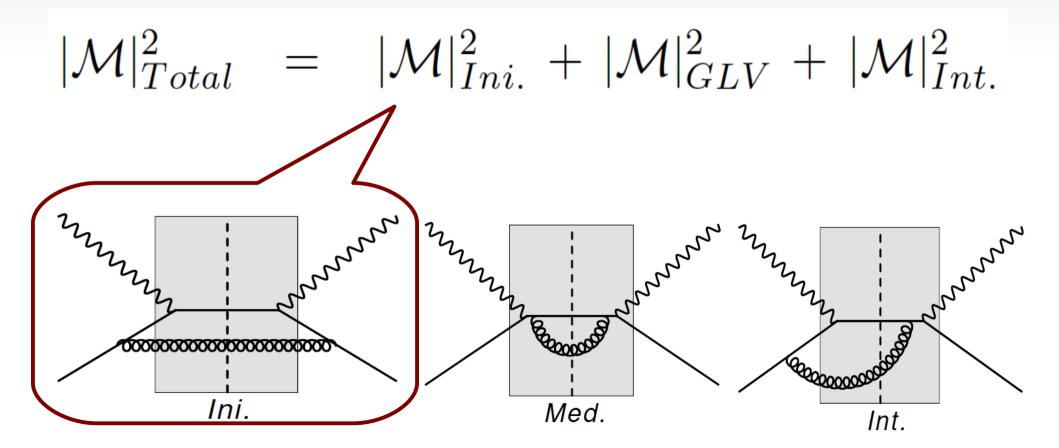
 $d\sigma_{(1)} \propto |\mathcal{M}|_{Total}^2$

$|\mathcal{M}|^2_{Total} = |\mathcal{M}|^2_{Ini.} + |\mathcal{M}|^2_{GLV} + |\mathcal{M}|^2_{Int.}$



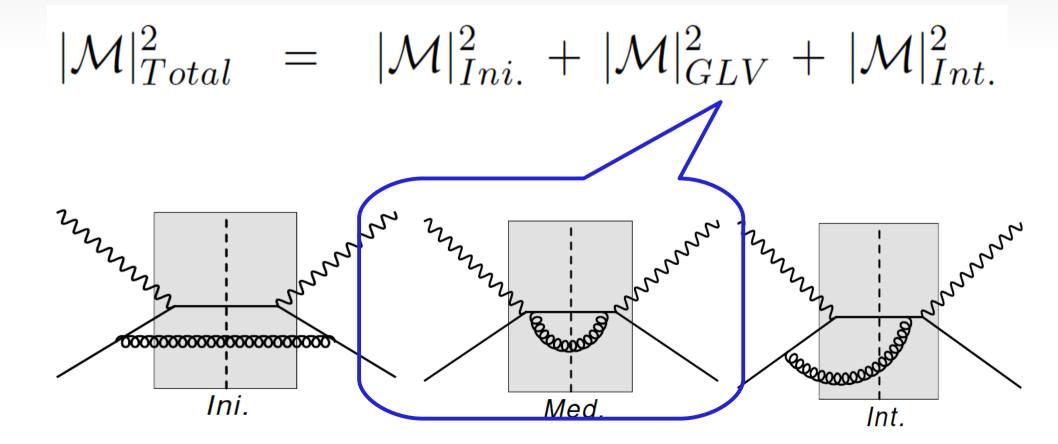
Radiative cross section

 $d\sigma_{(1)} \propto |\mathcal{M}|_{Total}^2$



Radiative cross section

 $d\sigma_{(1)} \propto |\mathcal{M}|_{Total}^2$

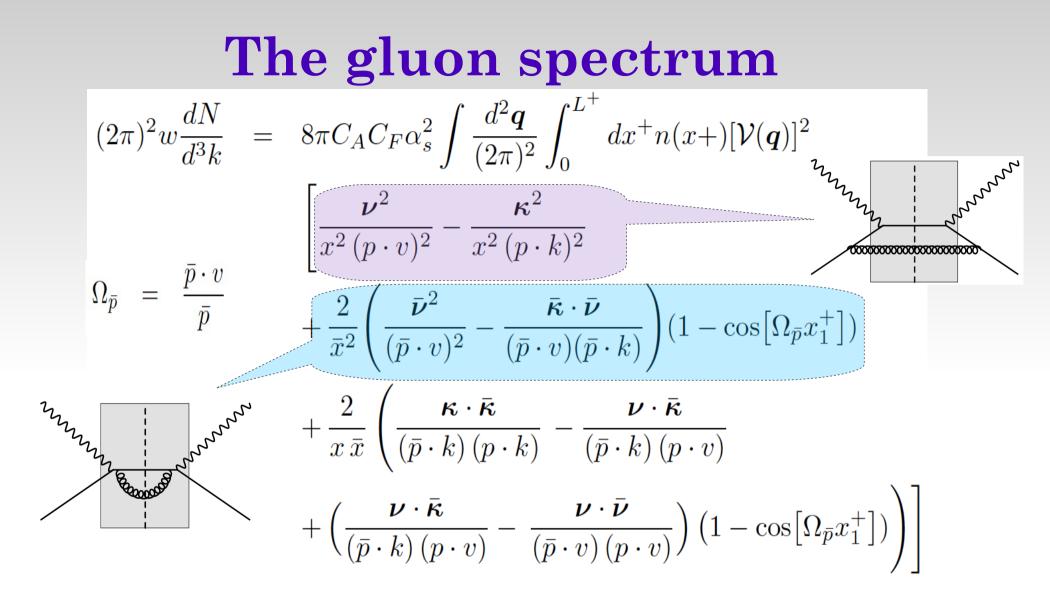


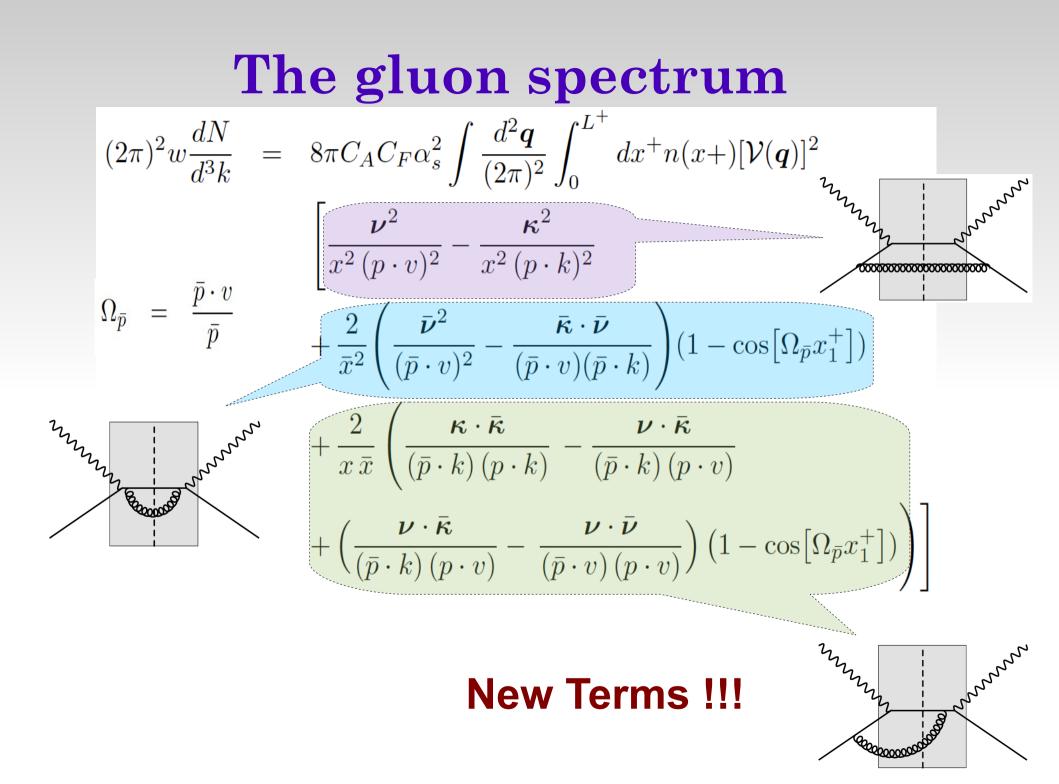
Radiative cross section

 $d\sigma_{(1)} \propto |\mathcal{M}|_{Total}^2$

 $|\mathcal{M}|^2_{Total} = |\mathcal{M}|^2_{Ini.} + |\mathcal{M}|^2_{GLV} + |\mathcal{M}|^2_{Int.}$ Show where the second s Second Second - pa Ini. Med.

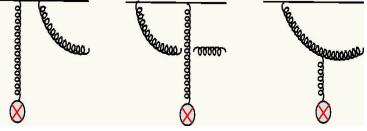
$$\begin{array}{rcl}
\textbf{The gluon spectrum} \\
(2\pi)^2 w \frac{dN}{d^3 k} &= 8\pi C_A C_F \alpha_s^2 \int \frac{d^2 \boldsymbol{q}}{(2\pi)^2} \int_0^{L^+} dx^+ n(x+) [\mathcal{V}(\boldsymbol{q})]^2 \\
& \left[\frac{\boldsymbol{\nu}^2}{x^2 (p \cdot v)^2} - \frac{\boldsymbol{\kappa}^2}{x^2 (p \cdot k)^2} \\
& \left[\frac{\boldsymbol{\nu}^2}{x^2 (p \cdot v)^2} - \frac{\boldsymbol{\bar{\kappa}} \cdot \boldsymbol{\bar{\nu}}}{x^2 (p \cdot k)^2} \\
& + \frac{2}{\bar{x}^2} \left(\frac{\boldsymbol{\bar{\nu}}^2}{(\bar{p} \cdot v)^2} - \frac{\boldsymbol{\bar{\kappa}} \cdot \boldsymbol{\bar{\nu}}}{(\bar{p} \cdot v) (\bar{p} \cdot k)} \right) (1 - \cos[\Omega_{\bar{p}} x_1^+]) \\
& + \frac{2}{x \bar{x}} \left(\frac{\boldsymbol{\kappa} \cdot \boldsymbol{\bar{\kappa}}}{(\bar{p} \cdot k) (p \cdot k)} - \frac{\boldsymbol{\nu} \cdot \boldsymbol{\bar{\kappa}}}{(\bar{p} \cdot k) (p \cdot v)} \\
& + \left(\frac{\boldsymbol{\nu} \cdot \boldsymbol{\bar{\kappa}}}{(\bar{p} \cdot k) (p \cdot v)} - \frac{\boldsymbol{\nu} \cdot \boldsymbol{\bar{\nu}}}{(\bar{p} \cdot v) (p \cdot v)} \right) (1 - \cos[\Omega_{\bar{p}} x_1^+]) \right) \end{array}$$

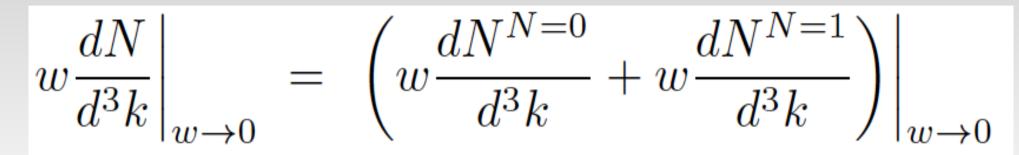


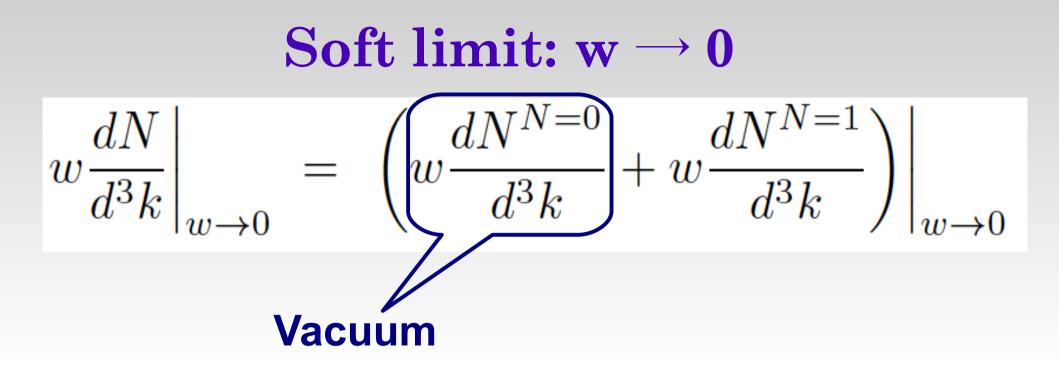


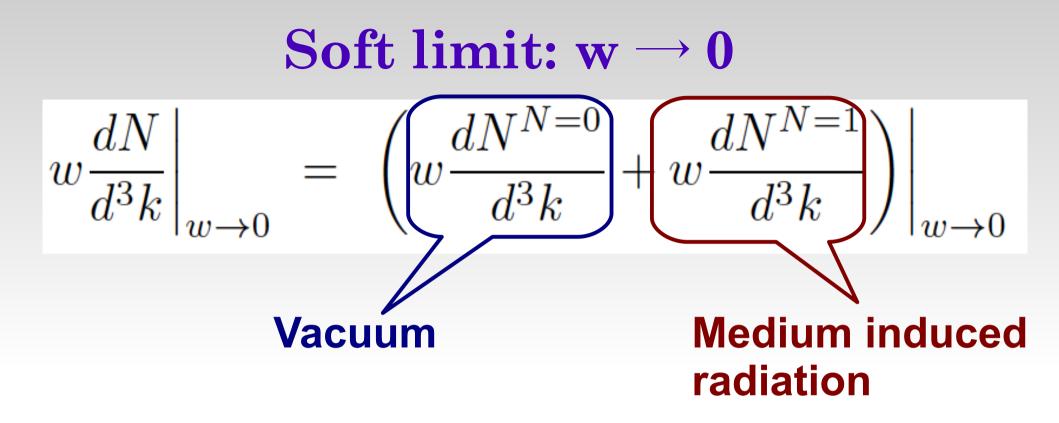
$$\begin{aligned} \mathbf{The gluon spectrum} \\ (2\pi)^2 w \frac{dN}{d^3 k} &= 8\pi C_A C_F \alpha_s^2 \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \int_0^{L^+} dx^+ n(x+) [\mathcal{V}(\mathbf{q})]^2 \\ & \left[\frac{\boldsymbol{\nu}^2}{x^2 (p \cdot v)^2} - \frac{\boldsymbol{\kappa}^2}{x^2 (p \cdot k)^2} \right] \\ \Omega_{\bar{p}} &= \frac{\bar{p} \cdot v}{\bar{p}} &+ \frac{2}{x^2} \left(\frac{\bar{\boldsymbol{\nu}}^2}{(\bar{p} \cdot v)^2} - \frac{\bar{\boldsymbol{\kappa}} \cdot \bar{\boldsymbol{\nu}}}{(\bar{p} \cdot v) (\bar{p} \cdot k)} \right) (1 - \cos[\Omega_{\bar{p}} x_1^+]) \\ &+ \frac{2}{x \bar{x}} \left(\frac{\boldsymbol{\kappa} \cdot \bar{\boldsymbol{\kappa}}}{(\bar{p} \cdot k) (p \cdot k)} - \frac{\boldsymbol{\nu} \cdot \bar{\boldsymbol{\kappa}}}{(\bar{p} \cdot k) (p \cdot v)} \right) \\ &+ \left(\frac{\boldsymbol{\nu} \cdot \bar{\boldsymbol{\kappa}}}{(\bar{p} \cdot k) (p \cdot v)} - \frac{\boldsymbol{\nu} \cdot \bar{\boldsymbol{\nu}}}{(\bar{p} \cdot v) (p \cdot v)} \right) (1 - \cos[\Omega_{\bar{p}} x_1^+]) \right) \end{aligned}$$

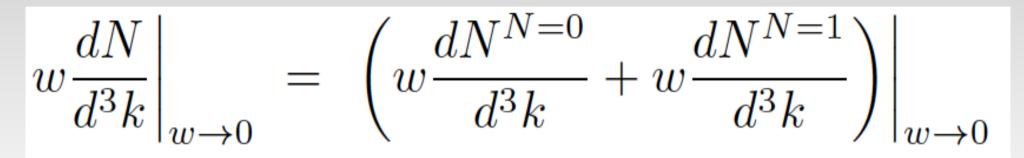
★ In the limit when $\Theta_{qq} \rightarrow 0$, one recovers the spectrum of an asymptotic parton (GB).











$$w \frac{dN^{N=0}}{d^3k} \propto 2 \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)}$$

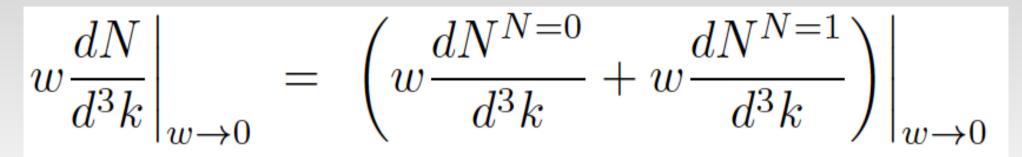
 \Rightarrow Vacuum: Angular ordered

$$w\frac{dN}{d^3k}\Big|_{w\to 0} = \left. \left(w\frac{dN^{N=0}}{d^3k} + w\frac{dN^{N=1}}{d^3k} \right) \right|_{w\to 0}$$

$$w \frac{dN^{N=0}}{d^3k} \propto 2 \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)}$$

 \Rightarrow Vacuum: Angular ordered

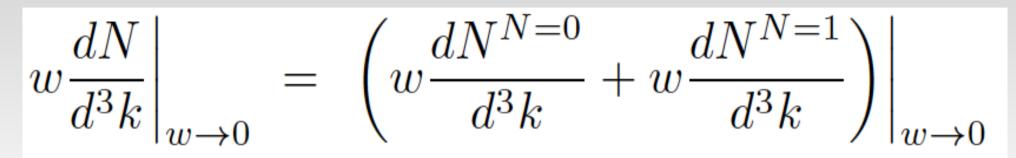
$$w\frac{dN^{N=1}}{d^3k} \propto \frac{\hat{q}\,L^+}{m_D^2} \left(2\frac{\kappa\cdot\bar{\kappa}}{\kappa^2\,\bar{\kappa}^2} - \frac{1}{\kappa^2}\right) \Rightarrow \text{Medium induced}$$

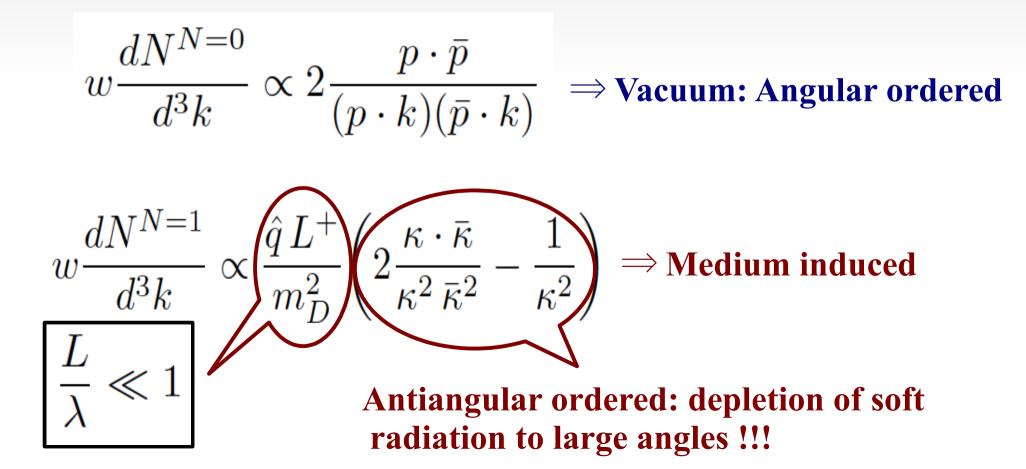


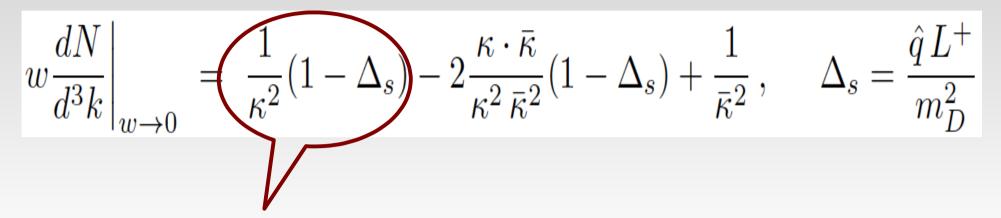
$$w \frac{dN^{N=0}}{d^3k} \propto 2 \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)}$$

 \Rightarrow Vacuum: Angular ordered

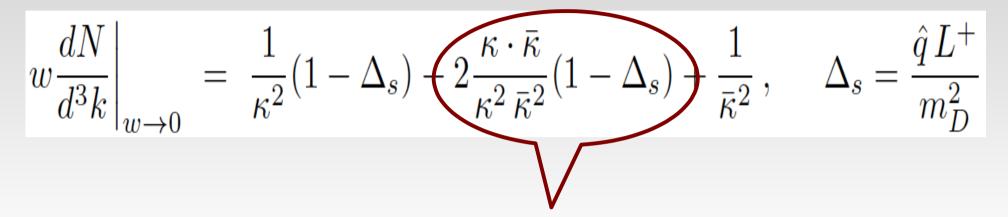
$$w \frac{dN^{N=1}}{d^3k} \propto \underbrace{\hat{q} L^+}_{m_D^2} \left(2 \frac{\kappa \cdot \bar{\kappa}}{\kappa^2 \bar{\kappa}^2} - \frac{1}{\kappa^2} \right) \Rightarrow \text{Medium induced}$$
$$\underbrace{\frac{L}{\lambda} \ll 1}$$



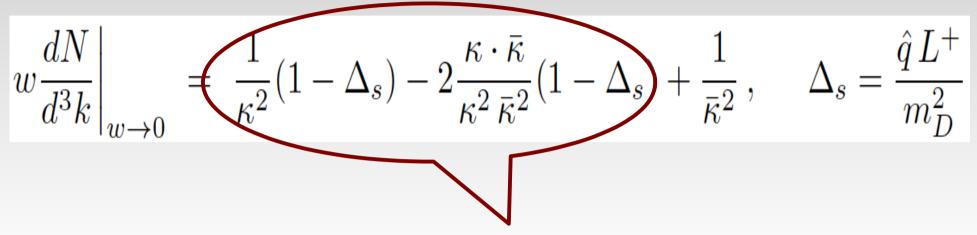




Hard medium independent radiation reduced by the probability Δ_s that one interaction of the projectile occurs in the medium



Quark-Quark Interference reduced by the probability Δs after the interaction of the projectile inside the medium



In the presence of a QGP, partons with small x are reduced in the Initial State Radiation

- \Rightarrow In agreement with expectations from CGC
- ⇒ Phenomenological implications for observables sensitive to the initial state radiation

Conclusions

- We study coherence effects for medium induced gluon radiation in the N=1 opacity expansion.
- In the soft limit we found a very rich structure of the medium induced radiation which provides a very intuitive probabilistic interpretation.
- Future work (stay tuned) :
 - * Numerical results for the N=1 opacity
 - * Multiple soft scattering and numerical studies
 - ★ Using modifications of initial state radiation due to QCD medium for phenomenology...
- First steps towards in medium jet calculus and medium evolution equations.