7th international workshop on High- p_T Physics at LHC, Frankfurt 2012

Color Transparency Effect in Deep Inelastic Scattering and at LHC era

- HERMES experiment and its kinematic
- Coherence length effect in exclusive ρ^0 electroproduction
- Color transparency effect
- Data on hadron formation and p_T -broadening at HERMES
- R_{AA} from ALICE and CMS data
- Summary and Outlook

- Recent ALICE and CMS data on R_{AA} of charge hadrons are compared with the calculations from several models.
- Paper "Color transparency and suppression of high- p_T hadrons in nuclear collisions" (B.Z.Kopeliovich, I.K.Potashnikova and I.Schmidt, Phys.Rev. C. 83, 021901 (R), 2011) provides one of the model-dependent explanations.
- Described below HERMES data on exclusive ρ^0 (coherent length and color transparency effects) and semi-inclusive hadron electroproduction (hadron formation and p_T broadening) have been compared with the calculations and, in a such way, support its applicability.

Longitudinally Polarized $e^{+(-)}$ Beam at HERA

 $P=27.56~{
m GeV/c},~{
m current}~50...100~{
m mA},~{
m polarization}$ of about $55\pm2\%$

Internal Storage Cell Gas Target

polarized: ~ 10^{14} nucl/cm², longitudinal polarization ~ 88%: ¹H, ²H; transverse ~ 78%: ¹H unpolarized: ~ $5\cdot10^{15}$ nucl/cm²: ¹H, ²H, ⁴He, ¹⁴N, ²⁰Ne, ⁸⁴Kr, ¹³¹Xe

HERMES Detector was (1995-2007) Two Identical Halves of Forward Spectrometer

• Acceptance: $40 < \Theta < 220$ mrad, $|\Theta_x| < 170$ mrad, $40 < |\Theta_y| < 140$ mrad

• Resolution: $\delta p/p \leq 1\%$, $\delta \Theta \leq 0.6$ mrad

Forward and Backward Drift Chambers:

- Ar(90 %), CO $_2(5$ %), CF $_4(5$ %) gases,
- drift time \leq 300 ns,
- 1877 FASTBUS TDCs readout,
- order of 250 $\mu{\rm m}$ resolution

- Electron identification done by RICH, TRD, Preshower, Calorimeter: efficiency $\geq 98\%$, hadron contamination $\leq 1\%$
- Calorimeter
 - lead glass (F101) blocks $9 \times 9 \times 50$ cm in array of 420 for top and bottom parts
 - resolution:

 $\Delta E/E[\%] = 1.5_{\pm 0.5} + 5.1_{\pm 1.1}/\sqrt{E[GeV]}$

–
$$M_{\pi^0}=134.9\pm0.2$$
 MeV, $\sigma=12.5\pm0.2$ MeV

- RICH from 1998 for π^{\pm} vs K^{\pm} and $p(\bar{p})$ separation: ~4000 PMTs, aerogel and C₄F₁₀
 - Dual rings of Cherenkov photons, n=1.03 for aerogel and n=1.0014 for C₄F₁₀
 - Probability-Matrix for one track, no impact on p_t^2 of tracks
 - RICH efficiencies over all kinematic region: π : 98 %, K: 88%

Deep Inelastic Scattering: Variables and Kinematic Distributions

π

 $e \xrightarrow{(E, p)} e \xrightarrow{(E, p)} q$

- $Q^2 \stackrel{lab}{=} 4EE' \sin^2(\Theta/2)$
- $\nu \stackrel{lab}{=} E E'$
- $x_{Bj} \stackrel{lab}{=} Q^2/2M\nu$
- $W^2 \stackrel{lab}{=} M^2 + 2M\nu Q^2$
- $z \stackrel{lab}{=} E_h / \nu$

Kinematics of Exclusive ρ^0 Electroproduction

• $\nu=5\div24$ GeV, $<\nu>=13.3$ GeV,

•
$$Q^2 = 1.0 \div 5.0 \text{ GeV}^2$$
, $< Q^2 >= 2.3 \text{ GeV}^2$

•
$$W = 3.0 \div 6.5 \text{ GeV}$$
, $< W >= 4.9 \text{ GeV}$

•
$$x_{Bj} = 0.01 \div 0.35$$
, $\langle x_{Bj} \rangle = 0.07$

Clean mass and exclusive peaks for ρ^0 :

 $\Delta E = \frac{M_X^2 - M_p^2}{2M_p}$, $M_X^2 = (p + q - V)^2$, background is subtracted using PYTHIA MC.

HERMES collab., Phys.Lett.B 513 (2001) 301-310; Eur.Phys.J. C 29, 171 - 179 (2003)

at $-t \lesssim 0.045 \text{ GeV}^2$ coherent ho^0 dominates, at $-t \gtrsim 0.1$ GeV² incoherent.

 $b_{coh} \approx r_A^2/3$ is in agreement with world data (H.Alvensleben et al, Phys.Rev.Let. 24, 792 (1970)).

- radius of the nucleus: $r_{14_N}\simeq 2.5~{
 m fm}$
- coherence length: distance traversed by $q\bar{q}$ fluctuation of the virtual photon:

- ρ^0 formation length: after $q\bar{q}$ is put on-shell it will evolve into ρ^0 over distance: $l_{form} = \frac{2 \cdot \nu}{m_{V'}^2 - m_V^2} = 1.3 \div 6.3 \text{ fm}$ $\langle l_{form} \rangle = 3.47 \text{ fm}$
- color transparency: transverse size of the $q\bar{q}$ of the wave packet $r_{q\bar{q}}\sim 1/\langle Q \rangle \simeq 0.4$ fm, $r_p=1$ fm

 Q^2 vs l_c of exclusive ho^0 at HERMES:

 $ightarrow
ho^0$ absorption at $l_c \leq r_{14_N}$

 \implies 2-dimensional analysis of Q^2 , l_c dependencies

Coherent Length Effect

(HERMES collab., Phys. Rev. Let. 82, 1999; Phys.Rev.Let., 90, 5, 2003)

• Left panel. Combined effect of initial and final state interactions for incoherent ρ^0 and additional effect of nuclear formfactor for coherent ρ^0 . Agreement with calculations (blue curves) based on CT approach (B.Z. Kopeliovich et al, Phys.Rev. C, **65**, 035201, 2002).

 Right panel. Calculations for incoherent production of semi-classical transport model without CT presented on right panel. (T.Falter, W.Cassing, K.Gallmeister and U.Mosel, nucl-th/0309057).

- \rightarrow Size of virtual photon controlled via Q^2
- \rightarrow No strong $W{-}{\rm dependence}$

Color Transparency Effect (HERMES collab., Phys.Rev.Let.,90,5,052501,2003)

The QCD factorization theorem rigorously not possible without the onset of the color transparency: (J.Collins,L.L.Frankfurt,M.Strikman Phys.Rev.D**56**,2982 (1997); M.Strikman, Nucl.Phys.A663&664,**64**,2000)

$$ightarrow r(qq)$$
 decreases with the increase of Q^2
 $ightarrow Tr^A(Q^2, l_{coh}) = \sigma^A_{(in)coh} / \sigma^H$ grows with Q^2

At fixed l_{coh} :

data	Slope of Q^2 -dependence, GeV $^{-2}$	Prediction, ${\sf GeV}^{-2}$
N incoh.	$0.089 \pm 0.046_{st} \pm 0.020_{syst}$	0.060
N coh.	$0.070 \pm 0.027_{st} \pm 0.017_{syst}$	0.048
N combined	0.074 ± 0.023	0.058

Agreement with theoretical calculations where positive slope of Q^2 -dependence was derived from the onset of the color transparency effect (B.Z. Kopeliovich et al, Phys.Rev. C, **65**, 035201, 2002)

\implies Different CT effects are predicted for ep, πp , pp and pA collisions

see, e.q.: G.Miller and M.Strikman talks on the workshop "Hard Exclusive Processes", Munich, 9-11 November 2009.

Color Transparency Effect from Jefferson Lab data: $e + p \rightarrow e' + \pi^+ + (n)$

(X.Qian et al, Phys.Rev.C, **81**, 055209, 2010) Kinematics:

$$4 \le E^{beam} \le 5.8 \text{ GeV}$$
 $0.9 \le E^{e'} \le 1.7 \text{ GeV}$ $W \approx 2 \text{ GeV}$

Transparency $T = \frac{\sigma^A}{A\sigma^N} \frac{=A^{\alpha}\sigma^N}{A\sigma^N} = A^{\alpha-1}$

Parameter α was measured from ¹H, ²H, ¹²C, ²⁷Al, ⁶³Cu and ¹⁹⁷Au data and compared with α extracted from pion-nucleus scattering data (hatched band).

 $\implies \text{Noticeable dependence of} \\ \alpha \text{ on } Q^2 \text{ measured and compared} \\ \text{with calculations: Glauber (solid),} \\ \text{Glauber+CT (dashed), Glauber+CT} \\ \text{with short-range correlations (dotted).} \\ \end{cases}$

 ϵ is the longitudinal polarization of the virtual photon measured from e' kinematics

- Kinematic cuts:
 - $1 < Q^2 < 10 \ {\rm GeV}^2$
 - $W^2 > 10 {\rm ~GeV^2}$, no resonances
 - $\nu < 23.5~{\rm GeV},$ radiative effects
 - 0.2 < z < 1.0

Target	$N^{\pi^+} \times 10^3$	$N^{\pi^-} \times 10^3$	$N^{K^+} \times 10^3$
2 D	1781	1445	356
4 He	134	107	27
20 Ne	380	303	82
84 Kr	321	260	72
$^{131}{\sf Xe}$	193	157	44

- Corrections:
 - Acceptance and smearing
 - Radiative effects
 - Nuclear transparency for exclusive ho^0 production at one π^\pm accepted
- To study contributions to the transverse momentum distributions from:
 - primordial transverse momentum
 - gluon radiation of the struck quark
 - multiple interactions of the "pre-hadron"
 - interactions of the formed hadrons

Hadron Electroproduction in Cold Nuclear Matter

- Scattering on a quark
- Quark energy loss in nuclear medium
- Fragmentation of quark to hadron (pre-hadron formation)
- Absorption of (pre-)hadron

Formation length from DIS to final hadron in various models for (pre-)hadron formation and absorption: $l_f \propto \nu(1-z)/k$

Experimental access to the hadronization through the measured multiplicity ratio:

$$R^{h}_{A}(\nu, Q^{2}, z, p_{t}^{2}) = \frac{\left(\frac{N^{h}(\nu, Q^{2}, z, p_{t}^{2})}{N^{e'(\nu, Q^{2})}}\right)_{A}}{\left(\frac{N^{h}(\nu, Q^{2}, z, p_{t}^{2})}{N^{e'(\nu, Q^{2})}}\right)_{D}}$$

data integrated over ϕ and Θ , see e.g.: HERMES collab., Nucl. Phys. B 780 (2007) 1-27; arXiv:0704.3270

Hadron Formation in DIS in a Nuclear Environment

 \implies Absorption is large at $z \rightarrow 1$, where $l_f \propto \nu(1-z)/k$ is short.

The fractional energy z_h is directly measured and compared with the prediction of B.Z.Kopeliovich, J.Nemchik, E.Predazzi in 1995, see S.Domdey, D.Gruenewald, B.Z.Kopeliovich ans H.J.Pirner, Nucl.Phys. A 825, 200, 2009.

 \implies Fast hadrons have a relatively short formation time, leading to the reduction of the ratio.

(HERMES Collab., Eur. Phys. J. C 20, 479 (2001))

(HERMES collab., Phys. Lett. B 684 (2010) 114-118;; arXiv:0906.2478, hep-ex)

 \implies Direct evidence of p_t -broadening in leptoproduction

Kinematic Dependencies of Nuclear p_t -broadening:

- Broadening goes slightly down with increasing ν
- $\bullet\,$ Broadening goes up with Q^2
- Clear $z = E_h/\nu$ dependence. At $z \rightarrow 1$
 - p_t -broadening consistent with zero due to energy conservation: the struck quark cannot have lost energy
 - it is not due to elastic scattering of (pre-)hadrons

(B.Z.Kopeliovich et al, Nucl.Phys. A740 (2004)

211; S.Domdey, D.Gruenewald, B.Z.Kopeliovich ans

H.J.Pirner, Nucl.Phys. A 825, 200, 2009.)

\implies Constraint on pre-hadron production mechanism

The R_{AA} data from ALICE as "Color transparency and suppression of high- p_T hadrons in nuclear collisions"

see B.Z.Kopeliovich, I.K.Potashnikova and I.Schmidt, Phys.Rev. C. 83, 021901 (R), 2011.

data from ALICE collab., Phys. Lett. B 696 (2011) 30-39

Calculations include:

- propagation of colorless dipole (pre-hadron) through a dense medium,
- its short production length,
- intensive energy loss at the early stage.

Data on high- p_T hadron production in heavy ion collisions include:

- the uncertainties from the variation in space and time of the medium properties,
- unmeasured fractional energy z_h convoluted with initial parton distribution, hard cross section and the fragmentation function,
- the contribution of the initial state effects in cold nuclear models.
- \implies Global analysis of experimental data to test the models is desirable...

ALICE data are confirmed and extended by CMS (arXiv:1202.2554v1 [nucl-ex])

Summary

• Data on nuclear transparency of exclusive ρ^0 production on ¹⁴N are in agreement with Color Transparency based calculations.

 \implies Phenomenon of color transparency, based on factorization theorem and small size configuration, could be used to study GPDs and their possible modifications in the cold or hot nuclear matter.

- HERMES data provide a strong support for shortness of the production length
- The first direct determination of p_T -broadening in SIDIS was performed on He, Ne, Kr and Xe targets. \implies It increases with A and remains constant with ν suggesting that effect is due to the "partonic" stage and that color neutralization happens near the surface or outside the nucleus.
- A colorless dipole created on a short production length evolves its size during propagation in medium.
- The energy dependence of this evolution and color transparency explain well the recent data from ALICE and CMS on nuclear suppression of light hadrons with large enough p_T .

Outlook: much more data on heavy targets are published by HERMES:

- *Multidimensional Study of Hadronization in Nuclei*, Eur. Phys. J. A 47 (2011) 113; arXiv:1107.3496.
- Transverse momentum broadening of hadrons produced in semi-inclusive deep-inelastic scattering on nuclei, Phys. Lett. B 684 (2010) 114-118; arXiv:0906.2478 (hep-ex).
- Nuclear-mass dependence of beam-helicity and beam-charge azimuthal asymmetries in DVCS, Phys. Rev. C 81 (2010) 035202; arXiv:0911.0091 (hep-ex) and DESY-09-190
- *Hadronization in Semi-inclusive deep inelastic scattering on nuclei*, Nucl. Phys. B 780 (2007) 1-27; Eprint numbers: arXiv:0704.3270 and DESY-07-050
- *Double hadron leptoproduction in the nuclear medium*, Phys. Rev. Lett, 96 (2006) 162301; Eprint numbers: hep-ex/0510030 and DESY-05-205
- Quark Fragmentation to $\pi^{+/-}$, π^0 , $K^{+/-}$, p and \bar{p} in the Nuclear Environment, Phys. Lett. B 577 (2003) 37-46; Eprint numbers: hep-ex/0307023 and DESY-03-088
- Q²-dependence of Nuclear Transparency for coherent and incoherent rho⁰ production, Phys. Rev. Lett. 90 (2003) 052501; Eprint numbers: hep-ex/0209072 and DESY-02-152
- Observation of a Coherence Length Effect in Exclusive ρ⁰ Electroproduction, Phys. Rev. Lett. 82 (1999) 3025-3029; Eprint numbers: hep-ex/9811011 and DESY-98-178