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• L + QCD = Worldʼs Greatest Puzzle!
intuition out the window

• The State of the Data
data from COMPASS, HERMES, 
JLab, and RHIC

• The State of L 
parton orbital angular momentum

• The Missing Spin Programme
Drell-Yan + spin



L + Relativity = Weirdness
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ẑ x̂ − iŷ
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Why there are no transversely polarized electron machines!

How is Lz affected 
by boosts? 
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Simple orbit with Lz only:  pz=0, z=0 → Lx=Ly=0 ....
and apply boost β in –x direction
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Spin, L, and the free Dirac Hamiltonian 
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no shells!

intuition?
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Dirac particle in a central potential

very useful for future experiments. Furthermore, it would 

be interesting to examine in more detail how such x F- 

dependence are related to the spin-dependent structure 

functions of the colliding hadrons. Studies along this line 

are now underway. 

We thank A. Yokosawa for helpful discussions and for correspon- 

dence. 

Appendix A 

The spherical solutions of a Dirac particle in a central potential 
are discussed in some of the text books (see, for example, Landau, 
L.D., Lifshitz, E.M.: Course of theoretical physics. Vol. 4: Rela- 
tivistic quantum theory. New York : Pergamon 1971). The notations 
and conventions we use here are slightly different. In order to avoid 

possible misunderstanding, we list the general form of some of the 
key formulae in the following: 

In terms of spherical variables, a state with given e, j ,  m and P 

can be written as: 

~,:;,~e (r, 0, q~ ) 

( 
k ( -- 1) U-' '  + '>/-g:~, (r) (2/," (0 (9) ] 

(A1) 

Here l=j+_ 1/2, l '= 2 j - I  and P =  ( -  ly; g?/" and f2/,"' are two- 

spinors which, for the possible values of l, are given by: 

= | / / ~ m  y~z:m_,/2(O,O)~(1/2 ) 
V 2 j  

+ Yt, =,,, +,/2 (0, q~ ) ~ ( - 1/2), (n2)  
I/ z j  ' 

f2/_-~+ 1/2 (0, q~ ) 

= _ ]  j / / ~ m + l  yt+ _ ,_,/2 (0, q5 ) ~ (1/2) 
V 2 j + 2  ~- 

+ | ~  Yt, =,,+,/2 (0, ~b ) ~ ( -  1/2). (A3) 
V 2 j + 2  

Here, ~ ( + 1/2) stand for the eigenfunctions for the spin-operator 
d-_ with eigenvalues + 1, and YH:(0, qb ) for the spherical harmonics 

which form a standard basis for the orbital angular momentum 
operators ([2 f:). The function f~/(r) and g~/, (r) are solutions of 

the coupled differential equations: 

1 dr r J f,z(r)=[e+M-g(r)]g~/.(r), (A4) 

dr ~ J g~/' (r)= - [ a - M -  U(r)]f~z(r). (A5) 

where K = - ( j + I / 2 )  for j= l+ l /2  and ~ c = j + l / 2  for j=l  
- 1/2. Here, as well as in the text, we consider only the static vector- 
potential. This is because, the goal of this model calculation is 
merely to demonstrate the significance of the points (1) and (2) 
mentioned in Sect. 1 of the text. Other kinds of potentials can be 
taken into account in a straight forward manner. 
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Appendix B 

First, it can easily be shown that, the definition of the magnetic 

moment of a Dirac particle given in Sect. 2, namely, ~/I = r x 

leads to the usual expression of the magnetic moment of a spin 
1/2 particle in the non-relativistic limit. For a valence quark q in 
a given state q/~ j,,p (r), its magnetic moment, which corresponds to 

the M = e 2 ~ d3r r • J (r) in the classic electrodynamics, is given by 

(l~q (ejmP)}, the expectation value of the operator ~/I in this state 

~u,/,,,p (r). Expressed in terms of the upper or lower component of 

~u~/!,,e(r ), namely two spinor ~0~/,,,p(r) or x ...... p(r), (Mq(ejmP)} 
is gwen by, 

< M q  ( e j m P ) }  

=eq ~ d3r [ O ~ j ' ' e ( r ) ( l + a ) o : j ' ' ( r )  
(. e4-M-U(r) 

~0~j,,e(r)(r•215 ) d U(r) 1 
+ 2r[e + M -  U(r)] 2 dr 

[ e - M -  U(r) 

Z~jmp(r)(r•215 d 
q 2 r [ e - M -  U(r)] 2 " dl ~ u(r) 1 . (B 1) 

Taking the non-relativistic limit: e..~M> U(r), we obtain imme- 
diately, 

eq 
(Mq (ejmP)} ~ ~o+~j mP (r) (l + a)  ~o~/me (r), (B2) 

which is the usual expression for non-relativistic point-like spin- 
1/2 particles. Similarly, we can insert (2.2a) into (2.9) and obtain 

an expression of gq in terms of )Co (r) and U(r) as, 

1 

gq=~ r2dr f~(r) Ie+ M-- U(r) 

r d U(r) l 
q 3[e+M-U(r)] 2 d~ 

(B3) 

which reduces to 1/(2 M) in the non-relativistic limit [e ~ M>> U(r)]. 

Now let us find the expressions of the magnetic moments of the 
baryons in terms of those of the quarks in their ground states. In 
the coordinate space, (2.10) can be written as, 

/28 =4 ~ ~ ~d3rld3r2d3r3 
i=1 k = l  

•  r r ~ , r  M ~ r r ~ , r  B (  2' - 3)1 qi'Jqk B( I, _ 3)"  (B4) 

By inserting the ~ ( r  1, r z, r3) given by (2.6) into (B4), and intro- 

ducing the abbreviation 

• ( i , k ) ( • +  
rtat ~ t  B v'ol,,'~2,,,o31mj,m2,m3) 

~ d3rl d3r2 d3r3 qJ (r= [ f~, m" ) 
1 

• L ~ ' ( r~l fP 'm~)  ' (BS) 

we can write the magnetic moment ~ e as 
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quarks as Dirac particles, and to describe their states in 
terms of Dirac spinors. In fact, this is usually the case, 
except in non-relativistic (static) quark models. 

It is known that Dirac particles confined in a limited 
space have a number of remarkable properties, and one 

of these features (which is trivial but nevertheless im- 

portant) is the following: independent of the details of 

the confining system, the orbital angular momentum of 

this particle is not a good quantum number - except in 

the non-relativistic limit. That is, except for those cases 

in which the ratio between the kinetic energy and the 

mass of the quark is much less than unity, the eigenstates 

of the quarks cannot be characterized by their orbital 
angular momentum quantum numbers. 

Having this in mind, it seems useful to begin our dis- 
cussion by recollecting some of the key formulae con- 

cerning the spherical solutions of the Dirac equation f o r  

a particle of mass M in a given central field. Here, it is 

envisaged that the valence quark q is such a particle, and 

that the central potential is the zeroth-order approxi- 

mation of the mean field due to other constituents of the 

hadron. (See in this connection also [8].) This seemingly 

rather special case is meant to serve as an illustrative 

example. As we can see in the following explicit calcu- 

lations, our main conclusions are independent of the spe- 

cific form of the potential. In fact, even the assumption 

that the potential is central is a matter of convenience - 

in the sense that the main conclusions remain to be valid, 

even when the model is modified through the inclusion 

of non-central interaction terms. 

We denote the solution of the above-mentioned equa- 

tion by the Dirac four-spinor ~u and/or  its upper- and 

lower-component, the corresponding two-spinors ~0 and 

Z. The stationary states are characterized by the following 

set of quantum numbers e, j ,  m and P which are respec- 

tively the eigenvalues of the operators I2 (the Hamilto- 
nian), j2, s (total angular momentum and its z-compo- 

nent) and /~ (the parity). Since every eigenstate of the 

valence quark characterized by e, j ,  m and P corresponds 

to two different orbital angular momenta l and l '  = l _  1, 
(see Appendix A), it is clear that orbital motion is involved 
in every stationary state. This is true also when the valence 
quark is in its ground state (q/~j,~p where e = e  0, j =  1/2, 
m =  __+ 1/2, P =  +2). This state can be expressed as fol- 

lows: 

0 ''-/f~ f2~/2 m(o,m(0'49))49 ) (2.1) , e )  - kg ' 

The angular part of the two-spinors can be written in 
terms of spherical functions Yll:(0,49) and (non- 
relativistic) spin-eigenfunctions which are nothing else 

but the Pauli-spinors g ( _ 1/2): 

m(0, 49) = Yoo(0, 49 ) (m), 

2 This is obviously consistent with the usual assumption [see, for 

example, Lichtenburg, D.B.: Unitary symmetry and elementary 

particles, 2nd edn., p. 216. New York: Academic Press 1978] that  

all the quarks are spin 1/2 particles with the same parity - defined 

as positive 

= -1//3"/ 
~ 2 m 

/ / /3  + 2m 

+ 6 

Ylm_~/2(O,O ) ~ (1/2) 

Ylm+l/2(0,49 ) ~ (--1/2). 

The radial part, fo (r) and gl (r), of the two-spinors are 
solutions of the differential equations" 

fo' (r) = [e + M -  U(r)] gl (r), (2.2a) 

g{ (r) + 2 gl (r) = - [e - M -  U(r)] f0 (r), 
r 

(2.2b) 

where r is the distance between the quark and the center 

of mass of the hadron. The general form of these formulae 
are listed in Appendix A. 

The average orbital angular momentum of the va- 

lence-quark in its ground state given by (2.1) can be read- 

ily calculated. For those in the Jz = m = + 1/2 state, it is, 

(4  (go, 1/2, 1/2, + )) _2_x ~ g~ (r) r 2 dr > 0 , (2.3) 
o 

while the corresponding x- and y-components are zero. 
This explicitly shows that, even in the ground state 

( j =  1/2, m =  + 1/2, P =  +) ,  the valence quark is per- 
forming orbital motion, and that the direction of the 

effective orbital motion is counter-clockwise with respect 

to the polarization axis (which is the z-axis in this case). 
Such a conclusion can also be clearly seen by evaluating 

the current density of the valence-quark at a given r. We 

recall that, the four-current density J~ ~ (p, 3) o fa  Dirac 

particle is defined as, ju  ~ qTyu ~, (where yu,p---0, 1, 2, 

3 are the Dirac matrices), and we obtain, 

1 
P(e0, 1/2, 1/2, + [ r ) = ~  [foa(r)+g2(r)], (2.4a) 

Jx(e0, 1/2, 1/2, + Ir)= +2@r f~ (2.4b) 

Jy(eo, 1/2,1/2,  + I r ) -  
x 

2nr f~ (r), (2.4c) 

J~(eo, 1/2, 1/2, + I r ) = 0 .  (2.4d) 

By inserting (2.2a) into (2.4b), (2.4c) and (2.4d), we ob- 
tain, 

Jx(eo, 1/2, 1/2, + [r) 

sin 49 sin 0 1 d 
- 4re c o + M -  U(r) d~ f~ (2.5a) 

Jy(eo, 1/2, 1/2, + Ir) 

cos ~b sin 0 

4~  

1 d 

e o + M -  U(r) d-~ f2( r ) ;  (2.5b) 

J~(e0, 1/2, 1/2, + I r ) = 0 .  (2.5c) 

Liang, Meng, 
ZPA 344 (1992)
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The Wacky World of
Hyperon Polarization

Unpolarized beams on unpolarized targets produce
hyperons which are strongly polarized!

... direction is n̂ = pbeam × pY

dσUUT ∼ sin(φl
h − φl

Sh
) · f1(x) D⊥(1)

1T (z) =

pN → Y ↑X data

The key seems to be hyperon spin structure ... in NRQM:
p ∆u = +4/3, ∆d = −1/3, ∆s = 0
Λ ∆s = +1, ∆u = ∆d = 0
Σ± ∆s = −1/3, ∆u, d = +4/3
Ξ± ∆s = +4/3, ∆u, d = −1/3

⇒ sign of polarization is opposite to ∆s ...
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Unpolarized beams on unpolarized targets produce
hyperons which are strongly polarized!

... direction is n̂ = pbeam × pY

dσUUT ∼ sin(φl
h − φl

Sh
) · f1(x) D⊥(1)

1T (z) =

pN → Y ↑X data

The key seems to be hyperon spin structure ... in NRQM:
p ∆u = +4/3, ∆d = −1/3, ∆s = 0
Λ ∆s = +1, ∆u = ∆d = 0
Σ± ∆s = −1/3, ∆u, d = +4/3
Ξ± ∆s = +4/3, ∆u, d = −1/3

⇒ sign of polarization is opposite to ∆s ...

Hyperon spin structure in CQM:
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Thomas Precession & the DGM Model 

N.C.R. Makins, Collab Mtg, DESY, Apr 02

The DGM Model: Parton Recombination

Idea: Thomas precession in an attractive potential
creates a ‘spin-orbit’ force that tries to align !L and !S of an
accelerating quark/diquark.

Λ: ∆s = +1 PΛ from accelerated sea s quark

s
L

ud( )0

Σ+: ∆u = +4/3 PΣ from accelerated valence (uu)1 diquark

s

L)( 1uu

DGM does rather well

Thomas precession: relativistic effect due [ boost, rotation] ≠ 0 ... 
→ ʻspin-orbitʼ pseudo-force that aligns L and S of accelerating particle

DGM model did 
pretty well
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Thomas Precession & the DGM Model 

N.C.R. Makins, Collab Mtg, DESY, Apr 02

The DGM Model: Parton Recombination

Idea: Thomas precession in an attractive potential
creates a ‘spin-orbit’ force that tries to align !L and !S of an
accelerating quark/diquark.

Λ: ∆s = +1 PΛ from accelerated sea s quark

s
L

ud( )0

Σ+: ∆u = +4/3 PΣ from accelerated valence (uu)1 diquark

s

L)( 1uu

DGM does rather well

Thomas precession: relativistic effect due [ boost, rotation] ≠ 0 ... 
→ ʻspin-orbitʼ pseudo-force that aligns L and S of accelerating particle

d

u

relevant?

DGM model did 
pretty well
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TMDs and Single Spin Asymmetries
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π+

π-

Single-spin asymmetries in  p↑p → πX Analyzing Power 

Huge single-spin asymmetry 
for forward meson production

!Sbeam · (!pbeam×!pπ) odd under naive Time-ReversalObservable

FNAL-E704
STAR Run 6
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π+

π-

Single-spin asymmetries in  p↑p → πX Analyzing Power 

Huge single-spin asymmetry 
for forward meson production

!Sbeam · (!pbeam×!pπ) odd under naive Time-ReversalObservable

STAR Run 6

STAR !"#$%&'()'!
* +),'-.+'/+00'123(4)0

1. Nphoton = 2

2. Center Cut (" and #)

3. Pi0 or Eta mass cuts

4. Average Yellow Beam 

Polarization = 56%

For                        , the

asymmetry in the " mass 

region is greater than 5 sigma 

above zero, and about 4 sigma 

above the asymmetry in the !0

mass region.

!"

STAR !"##$%&'&()&(*&$+,$-.

! Yellow beam asymmetry 

clearly reveals the shape of two 

mass resonances. 

! "#$%$&'(&)*&+)(,--$.%,&

/)00$,1&'*&2$.3$$*&!0 and "

mass regions.

1. Nphoton = 2

2. Etotal > 40GeV

3. No Center Cut

4. Average Yellow Beam 

Polarization = 56%

STAR 2006 PRELIMINARY

!"

NEW
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PDFs surviving on 
integration over 

Transverse Momentum
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PDFs surviving on 
integration over 

Transverse Momentum

The others are sensitive to intrinsic kT in the 
nucleon & in the fragmentation process

→ TMD = transv-momentum dependent func
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One T-odd function required to produce 
     SSA = single-spin asymmetries in
hard-scattering → related to parton L (OAM)

Sivers

Collins FF
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One T-odd function required to produce 
     SSA = single-spin asymmetries in
hard-scattering → related to parton L (OAM)

Sivers

Collins FF

PDFs surviving on 
integration over 

Transverse Momentum

The others are sensitive to intrinsic kT in the 
nucleon & in the fragmentation process

→ TMD = transv-momentum dependent func
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Electro-Production of Hadrons with Tranvserse Target

Electron beam defines 
scattering plane

Target spin 
transverse to beam

with respect to 
scattering plane

Measure dependence of hadron production on two azimuthal angles
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Electro-Production of Hadrons with Tranvserse Target

Electron beam defines 
scattering plane

Target spin 
transverse to beam

Azimuthal angles measured 
around q vector ...

with respect to 
scattering plane

Measure dependence of hadron production on two azimuthal angles

= target spin orientationφS
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Electro-Production of Hadrons with Tranvserse Target

Electron beam defines 
scattering plane

Target spin 
transverse to beam

Azimuthal angles measured 
around q vector ...

with respect to 
scattering plane

Measure dependence of hadron production on two azimuthal angles

= target spin orientationφS
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Electro-Production of Hadrons with Tranvserse Target

Electron beam defines 
scattering plane

Target spin 
transverse to beam

Azimuthal angles measured 
around q vector ...

with respect to 
scattering plane

Measure dependence of hadron production on two azimuthal angles

= target spin orientationφS φh = hadron direction
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Measuring: Azimuthal Asymmetries

N.C.R. Makins, Collab Mtg, DESY, Apr 02

Azimuthal Moments

“The Bible”:

Mulders & Tangerman,

PLB 461 (1996) 197
k

k’

q

!"#

Ph

P

Polarized SIDIS xsec
at leading order in 1/Q:

UU 1 ⊗ f1 = ⊗ D1 =

cos(2φl
h) ⊗ h⊥1 = ⊗ H⊥

1 =

UL sin(2φl
h) ⊗ h⊥1L = ⊗ H⊥

1 =

UT sin(φl
h + φl

S) ⊗ h1 = ⊗ H⊥
1 =

sin(φl
h − φl

S) ⊗ f⊥1T = ⊗ D1 =

sin(3φl
h − φl

S) ⊗ h⊥1T = ⊗ H⊥
1 =

LL 1 ⊗ g1 = ⊗ D1 =

LT cos(φl
h − φl

S) ⊗ g1T = ⊗ D1 =

SIDIS, at 
leading twist

beam
poln

target
poln
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Measuring: Azimuthal Asymmetries
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Azimuthal Moments
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The Sivers Function

f⊥1T(x,kT)

π+

uv
d

Lq within 
the proton

correlated with the 

protonʼs spin
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Sivers Moments for π and K from H↑& D↑
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Combining the two targets: Sivers of opposite sign for u and d



N.C.R. Makins, IWHSSʼ12, Lisboa, Apr 16-18, 2012



•• COMPASS 2010 H↑→ h±

N.C.R. Makins, IWHSSʼ12, Lisboa, Apr 16-18, 2012

COMPASS proton data: confirmation!
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NEW!

New COMPASS data from H target: high-precision 
confirmation of non-zero Sivers effect in SIDIS

◦ HERMES H↑→ π±
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W-dependence of Sivers
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W-dependence of Sivers
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y-dependence of Sivers

itʼs baaaack ...  ◦ at very low y (and so low W < 5 GeV)

Note: HERMES range is 3.2 < W < 7 GeV

NEW
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but TMD Evolution looking good!

•• COMPASS 2010 H↑→ h±
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◦ HERMES H↑→ π±

INT 12-49W, February 10th, 2012Gunar Schnell 
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FIG. 1: Comparison between HERMES [27] and preliminary COMPASS data [28] for the (a.) z and (b.) Ph⊥ dependence of
Eq. (3) with a proton target and π+ and h+ as final state hadrons respectively. The solid line is the fit from Ref. [22]. The
dashed curve is the result of evolving to the COMPASS scale using the full TMD-evolution of Ref. [16].

was not available at that time. We note that the anal-
ysis of Ref. [22] also uses deuteron data [32] from the
COMPASS experiment, which corresponds to higher val-
ues of Q2. However, the COMPASS asymmetry [32] on
deuteron target is very small due to strong cancellations
between the up and down quark Sivers functions and thus
is not heavily affected by the evolution. We have verified
that the results of the Torino fits are negligibly altered
if the deuterium data are excluded and only HERMES
data [27] are used in the fit, and the main result of our
present analysis is not affected.

Our calculations will follow the steps of Ref. [16]. For
gK , we use the functional form gK = 1

2g2b
2
T with g2 =

0.68 GeV2 [33], which was obtained by fits performed
using Drell-Yan data. In Eq. (4), this corresponds to
using C1 = 1.123 and bmax = 0.5 GeV−1. All anomalous
dimensions and K̃ are calculated to lowest non-vanishing
order as in Refs. [14, 15].

In Fig. 1(a,b), we show the evolution using the full
TMD-factorization approach as expressed in Eq. (4),
where the evolution is due to the terms in the expo-
nential. The evolution is applied to the most recent
Torino fits [22] as a function z and Ph⊥ , and use
hard scales corresponding to both HERMES data [27]
and recent preliminary COMPASS data [28]. The re-
sult of the evolution is compared with the data. The
x-dependent asymmetry is not ideal for the comparison
because there are strong correlations between x and Q2.
(Recall Q2 ! xys.) However, z or Ph⊥ dependent asym-
metries are measured at almost the same hard scales,
namely 〈Q2〉Hermes ! 2.4 GeV2 and 〈Q2〉COMPASS ! 3.8
GeV2, so we focus on the Sivers asymmetry as a func-
tion of these variables. (For the preliminary h+ COM-
PASS data that we use, 〈Q2〉 varies between 3.63 GeV2

and 3.88 GeV2, in the range of z from 0.2 to 0.7. The
corresponding variation in our calculation is negligible

relative to the variation between the HERMES and pre-
liminary COMPASS data sets.) We observe that includ-
ing QCD evolution leads to excellent consistency between
the HERMES [27] and preliminary COMPASS data [28],
without the need for further fitting. A critical point
is that the information about the non-perturbative evo-
lution contained in gK is taken from the measurement
of a totally different observable, at much higher energy
scales [33] (unpolarized Drell-Yan scattering up to Teva-
tron energies). In Fig. 1(b) we show a similar plot but
for the Ph⊥ dependence. That the same gK successfully
describes TSSA at HERMES and COMPASS is com-
pelling evidence for the universality of gK predicted by
the TMD-factorization theorem.

In Fig. 2, we show the evolution of the full asymmetry
to higher values ofQ2. The precise quantity plotted is the
asymmetry given in Eq. (3) as a function of z, integrated
over x, y and PT . Note that, although Refs. [15, 16] re-
port a strong suppression of the unpolarized TMDs and
the Sivers function itself with increasing Q2, the TSSA is
not as heavily suppressed. Therefore, it may be expected
that the Sivers SSA remains significant at the higher Q
values of experiments planned at the Relativistic Heavy
Ion Collider (RHIC) and the EIC. Still, the QCD evolu-
tion effects are clearly non-negligible and should be cor-
rectly included in future extractions. Ref. [9] predicts a
roughly ∼ 1/

√
Q suppression for the peak of the Sivers

asymmetry as a function of transverse momentum, for
large Q2 >∼ 10 GeV2. We find that, for the full asymme-
try integrated over all transverse momentum, a power-
like scaling law does not provide a good description in
the range of Q in Fig. 2. Generally, we find that the evo-
lution leads to suppression that is faster than ∼ 1/

√
Q,

but slower than ∼ 1/Q2. We caution, however, that a
completely correct treatment at large Q must include the
Y -term in Eq. (2), and it is possible that this will weaken
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Using available data

Constraining quark angular momentum through semi-inclusive measurements

Alessandro Bacchetta1, 2, ∗ and Marco Radici2, †

1Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, and
2INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy

The determination of quark angular momentum requires the knowledge of the generalized par-
ton distribution E in the forward limit. We assume a connection between this function and the
Sivers transverse-momentum distribution, based on model calculations and theoretical considera-
tions. Using this assumption, we show that it is possible to fit at the same time nucleon magnetic
moments and semi-inclusive single-spin asymmetries. This imposes additional constraints on the
Sivers function and opens a plausible way to quantifying quark angular momentum.

PACS numbers:

Nucleons are spin-1/2 composite particles made by
partons (i.e., quarks and gluons). Determining how
much of the nucleons’ spin is carried by each parton
is a critical endeavour towards an understanding of the
microscopic structure of matter. In this work, we pro-
pose a way to constrain the angular momentum Ja of
a (anti)quark with flavor a. To do this, we adopt an
assumption, motivated by model calculations and the-
oretical considerations, that connects Ja to the Sivers
transverse-momentum distribution (TMD) measured in
semi-inclusive deep-inelastic scattering (SIDIS) [1]. The
Sivers function f⊥a

1T [2] is related to the distortion of the
momentum distribution of an unpolarized parton a when
the parent nucleon is transversely polarized. We show
that this assumption of relating Ja to f⊥a

1T is compatible
with existing data, and we derive estimates of Ja.

The total angular momentum of a parton a (with
a = q, q̄) at some scale Q2 can be computed as a spe-
cific moment of generalized parton distribution functions
(GPD) [3]

Ja(Q2) =
1

2

∫ 1

0
dx x

(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.

(1)
The GPD Ha(x, 0, 0;Q2) corresponds to the familiar
collinear parton distribution function (PDF) fa

1 (x;Q
2),

which gives the probability of finding at the scale Q2

a parton with flavor a and fraction x of the (longitu-
dinal) momentum of the parent nucleon. The forward
limit of the GPD Ea does not correspond to any collinear
PDF [4]. It is possible to probe the function Ea in
experiments, but never in the forward limit (see, e.g.,
[5]). Assumptions are eventually necessary to constrain
Ea(x, 0, 0;Q2). This makes the estimate of Ja partic-
ularly challenging. The only model-independent con-
straint is the scale-independent sum rule

∑

q

∫ 1

0
dxEqv (x, 0, 0) = κ, (2)

∗Electronic address: alessandro.bacchetta@unipv.it
†Electronic address: marco.radici@pv.infn.it

where Eqv = Eq−E q̄ and κ denotes the anomalous mag-
netic moment of the parent nucleon.
Inspired by results of spectator models [6–10] and theo-

retical considerations [1], we propose the following simple
relation at a specific scale QL,

f⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L), (3)

where we define the n-th moment of a TMD with respect
to its transverse momentum pT as

f⊥(n)a
1T (x;Q2) =

∫
d2pT

(
p2T
2M2

)n

f⊥a
1T (x, p2T ;Q

2), (4)

and M is the nucleon mass.
In Eq. (3), L(x) is a flavor-indepedent function, repre-

senting the effect of the QCD interaction of the outgoing
quark with the rest of the nucleon. The name “lens-
ing function” has been proposed by Burkardt to denote
L(x) [11]. Computations of the lensing function beyond
the single-gluon approximation have been proposed in
Ref. [12]. It is likely that in more complex models the
above relation is not preserved, at least not as a simple
product of x-dependent functions [8]. Nevertheless, it is
useful and interesting to speculate on the consequences
of this simple assumption. As a more refined picture of
TMD and GPD emerges, it will be possible to improve
the reliability of this assumption or eventually discard it.
The present attempt should be considered as a “proof of
concept” for further studies in this direction.
The advantage of adopting the Ansatz of Eq. (3) is

twofold: first, it allows us to use the value of the anoma-
lous magnetic moment to constrain the integral of the
valence Sivers function; second, it allows us to obtain
flavor-decomposed information on the x-dependence of
the GPD E and ultimately on the quark total angular
momentum. This is an enticing example of how assum-
ing model-inspired connections between GPD and TMD
can lead to powerful outcomes.
The Sivers function has been extracted from SIDIS

measurements by three groups [13–16]. All of
them assume a flavor-independent Gaussian transverse-
momentum distribution of the involved TMD. Although
this is an oversimplification, we adopt the same choice.
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At the starting scale Q0, we use the following unpolarized
distribution and fragmentation functions

fa
1 (x, p

2
T ;Q

2
0) =

fa
1 (x;Q

2
0)

π〈p2T 〉
e−p2

T /〈p2
T 〉, (5)

Da
1(z, k

2
T ;Q

2
0) =

Da
1(z;Q

2
0)

πz2〈k2T 〉
e−k2

T /〈k2
T 〉, (6)

where z is the fraction of the energy of the fragment-
ing parton a carried by the detected hadron. For fa

1 (x)
we use the MSTW08LO set [17], for Da

1(z) we use the
DSS LO set [18]. We fix the width of the transverse-
momentum distributions for initial and fragmenting par-
tons, respectively, as

〈p2T 〉 = 0.14 GeV2, z2〈k2T 〉 = 0.42 z0.54(1− z)0.37 GeV2.
(7)

These parameters have been implemented in the HER-
MES gmc trans Monte Carlo generator and are known
to give a good description of the HERMES data [19]. In
principle, these functions should be evolved according to
TMD evolution [20]. However, we choose here to imple-
ment only the evolution of their collinear part.

Neglecting the contribution of heavier c, b, t flavors, we
parametrize the Sivers function in the following way (in-
spired by [15]):

f⊥a
1T (x, p2T ;Q

2
0) = f⊥(0)a

1T (x;Q2
0)

M2
1 + 〈p2T 〉

πM2
1 〈p2T 〉

e−p2
T /M2

1 e−p2
T /〈p2

T 〉
(8)

where M1 is a free parameter related to the width of the
transverse-momentum distribution, and

f⊥(0)qv
1T (x;Q2

0) = Cqv
√
2e

MM1

M2
1 + 〈p2T 〉

1− x/αqv

|αqv − 1| (1− x)fqv
1 (x;Q2

0),

(9)

f⊥(0)q̄
1T (x;Q2

0) = C q̄
√
2e

MM1

M2
1 + 〈p2T 〉

(1− x) f q̄
1 (x;Q

2
0).

(10)

Note that atQ0 we establish a relation between the Sivers
function for the combinations qv, q̄, and the correspond-
ing unpolarized PDF, at variance with what has been
done in the literature [15, 16]. This will turn out to be im-
portant when establishing a relation with the anomalous
magnetic moment, since it guarantees that the valence
Sivers function is integrable at any scale. We multiply
the unpolarized PDF by (1− x) to respect the predicted
high-x behavior of the Sivers function [21]. We intro-
duce the free parameter αqv to allow for the presence of
a node in the Sivers function at x = αqv , as suggested by
diquark model calculations [9, 10] and phenomenological
studies [22] (see the discussion in Ref. [23]). We imposed
constraints on the parameters Ca in order to respect the
positivity bound for the Sivers function [24], neglecting

the contribution of the helicity distribution g1(x) (as in
Ref. [15]).
Also for f⊥

1T , we neglect the effect of TMD scale

evolution [25]. We assume that f⊥(0)
1T (x;Q2) evolves

in the same way as f1(x;Q2), based on the results of
Refs. [26, 27] (note however that a slightly different re-
sult has been obtained in Ref. [28]).
In conclusion, we describe the SIDIS Sivers asymmetry

in the following way:

Asin(φh−φS)
UT (x, z, P 2

h⊥, Q
2) = −M2

1 (M
2
1 + 〈p2T 〉)

〈P 2
Siv〉2

Ph⊥
M

z3
(
1 +

〈k2T 〉
〈p2T 〉

)3

e
− P2

h⊥
〈P2

Siv〉

∑
a e

2
a f⊥(0)a

1T (x;Q2) Da
1(z;Q

2)∑
a e

2
a fa

1 (x;Q
2) Da

1(z;Q
2)

,

(11)

where

〈P 2
Siv〉 = z2M2

1

(
1 +

〈k2T 〉
〈p2T 〉

)(
1 +

〈k2T 〉
〈p2T 〉

+
〈k2T 〉
M2

1

)
, (12)

and Ph⊥ is the modulus of the transverse momentum of
the detected final hadron in the lab frame.
For the lensing function we assume the following

Ansatz

L(x) =
K

(1− x)η
. (13)

The choice of this form is guided by model calcula-
tions [6–10], by the large-x limit of the GPD E [21],
and by the phenomenological analysis of the GPD E pro-
posed in Ref. [29]. We checked a posteriori that there is
no violation of the positivity bound on the GPD Eqv as
expressed in Ref. [30], again neglecting the contribution
of g1(x). The nucleon anomalous magnetic moments are
computed as

κp =

∫ 1

0

dx

3

[
2Euv (x, 0, 0)− Edv (x, 0, 0)− Esv (x, 0, 0)

]
,

κn =

∫ 1

0

dx

3

[
2Edv (x, 0, 0)− Euv (x, 0, 0)− Esv (x, 0, 0)

]
.

(14)

We perform a combined χ2 fit to 105 HERMES proton
data [31], to 104 COMPASS deuteron data [32], and to
8 JLab neutron data [33], of the Sivers asymmetry with
identified hadrons. We sum the statistical and systematic
errors in quadrature and neglect the experimental nor-
malization uncertainty. Since the HERMES and COM-
PASS data are presented as three projections of the same
data set (binned in three different ways: in x, z, Ph⊥),
we consider all three projections but we multiply their
statistical errors by a factor

√
3 and we divide by 3 the

number of these bins (105 and 104) when counting the
number of degrees of freedom. The anomalous magnetic
moments are known to a precision of 10−7 or higher [34].
However, given the typical uncertainties on PDF extrac-
tions, our computation of κ is affected by a theoretical
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New Global Fit 
to Sivers

(binned in three different ways: in x; z; Ph?), we consider
all three projections but we multiply their statistical errors
by a factor

ffiffiffi
3

p
and we divide by 3 the number of these

bins (105 and 104) when counting the number of degrees
of freedom. The anomalous magnetic moments are known
to a precision of 10!7 or higher [35]. However, given
the typical uncertainties on PDF extractions, our compu-
tation of ! is affected by a theoretical error of the order
of 10!3. Therefore, for our present purposes we take !p ¼
1:793# 0:001, !n ¼ !1:913# 0:001.

We started from considering 15 free parameters. They
are C !q; Cqv ;"qv , with q ¼ u; d; s, the gluon coefficient Cg,
M1, the lensing parameters K and #, and the scales Q0 and
QL. However, after some explorations, we made a common
set of assumptions in all attempted fits. In all cases, we
fixed "dv;sv ¼ 0 (no nodes in the valence down and strange
Sivers functions, as suggested in Refs. [9,10,23,24]). We
also set Cg ¼ 0 (the influence of the gluon Sivers function
through evolution is anyway limited). Finally, all fits in-
dicated that Q0 ¼ QL ¼ 1 GeV was an acceptable choice.
Therefore, the actual number of free parameters is at most
10. In this framework, we conclude that it is possible to
give a simultaneous description of the SIDIS data and of
the nucleon anomalous magnetic moments assuming the
relation in Eq. (3).

We explored several scenarios characterized by different
choices of the parameters related to the strange quark. We
considered fits with fixed C!s ¼ 0, or with fixed Csv ¼ 0, or
with both parameters free (but constrained within positiv-
ity limits), or with both fixed Csv ¼ C !s ¼ 0. In all cases,
we obtained very good values of $2 per degree of freedom
($2=d:o:f:) between 1.323 and 1.347. All fits lead to a
negative Sivers function for uv and large and positive for
dv, in agreement with previous studies [13–16] and with
some models [36–38]. The data are compatible with van-
ishing sea-quark contributions (with large uncertainties).
However, in the x range where data exist, large Sivers
functions for !u and !d are excluded, as well as large and
negative for !s. The Sivers function for sv is essentially
unconstrained. The parameter M1 is quite stable around
0.34 GeV, as well as the strength of the lensing function K
around 1.86 GeV. The parameter # is typically around 0.4
but can vary between 0.03 and 2. The node "uv appears
only above x $ 0:78.

We now discuss in detail the case with fixed Csv ¼
C !s ¼ 0, because it gives the best $2=d:o:f: (1.323) and
suggests that it is possible to fit the present SIDIS data

for Sivers asymmetries in kaon emission without the
strange contribution to the Sivers function. The best-fit
values of the parameters are listed in Table I together
with their statistical errors corresponding to "$2 ¼ 1.
In Fig. 1, we show the corresponding outcome for

xf?ð1Þa
1T ðx;Q2

0Þ with a ¼ u; d; !u; !d. The Sivers functions
for s; !s vanish identically. The uncertainty bands are pro-
duced by propagation of the statistical errors of the fit
parameters including their correlations, and correspond to
"$2 ¼ 1. Our results are comparable with other extrac-
tions of the Sivers function [13,15,16]. They are also
qualitatively similar to the forward limit of the GPD E
extracted from experiments [30,31,39,40].
We can now compute the contribution to the anomalous

magnetic moment of each valence quark flavor qv using
Eq. (14). We obtain

TABLE I. Best-fit values of the 8 free parameters for the case Csv ¼ C !s ¼ 0. The final
$2=d:o:f: is 1.323. The errors are statistical and correspond to "$2 ¼ 1

Cuv Cdv C !u C
!d

!0:229# 0:002 1:591# 0:009 0:054# 0:107 !0:083# 0:122

M1 (GeV) K (GeV) # "uv

0:346# 0:015 1:888# 0:009 0:392# 0:040 0:783# 0:001
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FIG. 1. The function xf?ð1Þa
1T ðx;Q2

0Þ (see text) as a function of x
at the scale Q0 ¼ 1 GeV for a ¼ u; d; !u; !d from top panel to
bottom, respectively. The uncertainty bands are produced by the
statistical errors on the fit parameters listed in Table I.
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IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS

Anselmino et al, 
arXiv:0805.2677
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Boer-Mulders #1: <cos(2Φ)>UU from HERMES

x  

-110 1

U
U

!)
h

"
c
o

s
(2

#
2

-0.2

-0.1

0

0.1

0.2

Hydrogen

Deuterium

+
h

y  
0.4 0.6 0.8

-0.2

-0.1

0

0.1

0.2

z  
0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

  [GeV]hP
0.2 0.4 0.6

-0.2

-0.1

0

0.1

0.2
HERMES Preliminary

x  

-110 1

U
U

!)
h

"
c

o
s

(2
#

2

-0.2

-0.1

0

0.1

0.2

Hydrogen

Deuterium

-
h

y  
0.4 0.6 0.8

-0.2

-0.1

0

0.1

0.2

z  
0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

  [GeV]hP
0.2 0.4 0.6

-0.2

-0.1

0

0.1

0.2
HERMES Preliminary

h⊥1 (x,kT)⊗H⊥1 (z, pT) → cos(2φ) modulation

Deuterium ≈ Hydrogen values → indicate Boer-Mulders functions of 
SAME SIGN for up and down quarks (both negative, similar magnitudes)



N.C.R. Makins, IWHSSʼ12, Lisboa, Apr 16-18, 2012

Boer-Mulders #1: <cos(2Φ)>UU from HERMES

x  

-110 1

U
U

!)
h

"
c
o

s
(2

#
2

-0.2

-0.1

0

0.1

0.2

Hydrogen

Deuterium

+
h

y  
0.4 0.6 0.8

-0.2

-0.1

0

0.1

0.2

z  
0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

  [GeV]hP
0.2 0.4 0.6

-0.2

-0.1

0

0.1

0.2
HERMES Preliminary

x  

-110 1

U
U

!)
h

"
c

o
s

(2
#

2

-0.2

-0.1

0

0.1

0.2

Hydrogen

Deuterium

-
h

y  
0.4 0.6 0.8

-0.2

-0.1

0

0.1

0.2

z  
0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

  [GeV]hP
0.2 0.4 0.6

-0.2

-0.1

0

0.1

0.2
HERMES Preliminary

h⊥1 (x,kT)⊗H⊥1 (z, pT) → cos(2φ) modulation

Deuterium ≈ Hydrogen values → indicate Boer-Mulders functions of 
SAME SIGN for up and down quarks (both negative, similar magnitudes)

u d

signs deduced via 
Collins FF

+ chromo-lensing
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Pretzelosity & the Worm Gears

h1T
⊥ (x,kT ) h1L

⊥ (x,kT ) g1T (x,kT )
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chiral-odd ! needs Collins FF (or similar)

leads to sin(3φ-φs) modulation in AUT  

proton and deuteron data consistent with 
zero

cancelations? pretzelosity=zero? 
or just the additional suppression by two 
powers of Ph!  
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In several models, related to 
g1q–h1q → relativistic effects
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again chiral-odd

evidence from CLAS 
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symmetry?)
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COMPASS and HERMES
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5

tracted from HERMES [13] and Belle [37] data, are plot-
ted as filled bands in Fig. 4. The kinematic dependence
of the SSA for π+ from the CLAS data is roughly consis-
tent with these predictions. The interpretation of the π−

data, which tend to have SSAs with a sign opposite to ex-
pectations, may require accounting for additional contri-
butions (e.g. interference effects from exclusive ρ0p and
π−∆++ channels). This will require a detailed study with
higher statistics of both double and single spin asymme-
tries from pions coming from ρ-decays.
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FIG. 4: The measured x-dependence of the longitudinal tar-
get SSA Asin 2φ

UL (triangles). The squares show the existing
measurement ofAsin 2φ

UL from HERMES. The lower band shows
the systematic uncertainty. The upper band shows the exist-
ing theory predictions with uncertainties due to the Collins
function [28, 50].

The sin 2φ moment of the π+ SSA at large x is domi-
nated by u-quarks; therefore with additional input from
Belle measurements [37] on the ratio of unfavored to fa-
vored Collins fragmentation functions, it can provide a
first glimpse of the twist-2 TMD function h⊥

1L.
In summary, kinematic dependencies of single and dou-

ble spin asymmetries have been measured in a wide kine-
matic range in x and PT with CLAS and a longitudi-
nally polarized proton target. Measurements of the PT -
dependence of the double spin asymmetry, performed for
the first time, indicate the possibility of different average
transverse momentum for quarks aligned or anti-aligned
with the nucleon spin. A non-zero sin 2φ single-target
spin asymmetry is measured for the first time, indicat-
ing that spin-orbit correlations of transversely polarized
quarks in the longitudinally polarized nucleon may be
significant.
New, higher statistics measurements of SSAs in SIDIS

at CLAS [51] will allow us to examine the Q2, x, and PT

dependences of azimuthal moments in multi-dimensional
bins and investigate the twist nature of different observ-
ables.
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polarized 5.9 GeV electron beam with an average cur-
rent of 12µA. Polarized electrons were excited from a
superlattice GaAs photocathode by a circularly polar-
ized laser [31] at the injector of the CEBAF accelerator.
The laser polarization, and therefore the electron beam
helicity, was flipped at 30 Hz using a Pockels cell. The
average beam polarization was (76.8± 3.5)%, which was
measured periodically by Møller polarimetry. Through
an active feedback system [32], the beam charge asym-
metry between the two helicity states was controlled to
less than 150 ppm over a typical 20 minute period be-
tween target spin-flips and less than 10 ppm for the entire
experiment. In addition to the fast helicity flip, roughly
half of the data were accumulated with a half-wave plate
inserted in the path of the laser at the source, providing
a passive helicity reversal for an independent cross-check
of the systematic uncertainty.

The ground state 3He wavefunction is dominated by
the S-state, in which the two proton spins cancel and the
nuclear spin resides entirely on the single neutron [33].
Therefore, a polarized 3He target is the optimal effective
polarized neutron target. The target used in this mea-
surement is polarized by spin-exchange optical pumping
of a Rb-K mixture [34]. A significant improvement in tar-
get polarization compared to previous experiments was
achieved using spectrally narrowed pumping lasers [35],
which improved the absorption efficiency. The 3He gas of
~10 atm pressure was contained in a 40-cm-long glass ves-
sel, which provided an effective electron-polarized neu-
tron luminosity of 1036 cm−2s−1. The beam charge was
divided equally among two target spin orientations trans-
verse to the beamline, parallel and perpendicular to the
central !l-!l′ scattering plane. Within each orientation, the
spin direction of the 3He was flipped every 20 minutes
through adiabatic fast passage [36]. The average in-beam
polarization was (55.4± 2.8)% and was measured during
each spin flip using nuclear magnetic resonance, which
in turn was calibrated regularly using electron paramag-
netic resonance [37].

The scattered electron was detected in the BigBite
spectrometer, which consists of a single dipole magnet
for momentum analysis, three multi-wire drift cham-
bers for tracking, a scintillator plane for time-of-flight
measurement and a lead-glass calorimeter divided into
pre-shower/shower sections for electron identification
(ID) and triggering. Its angular acceptance was about
64 msr for a momentum range from 0.6 GeV to 2.5 GeV.
The left High Resolution Spectrometer (HRS) [38] was
used to detect hadrons in coincidence with the Big-
Bite Spectrometer. Its detector package included two
drift chambers for tracking, two scintillator planes for
timing and triggering, a gas Cerenkov detector and a
lead-glass calorimeter for electron ID. In addition, an
aerogel Čerenkov detector and a ring imaging Čerenkov
detector were used for hadron ID. The HRS central mo-
mentum was fixed at 2.35 GeV with a momentum accep-
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Figure 1. 3He A
cos(φh−φS)
LT azimuthal asymmetry plotted

against x for positive (top left) and negative (top right)
charged pions. The ALL correction (see text) that was ap-
plied and its uncertainty are shown in the bottom panels.

tance of ±4.5% and an angular acceptance of ∼6 msr.
The SIDIS event sample was selected with particle

identification and kinematic cuts, including the four mo-
mentum transfer squared Q2 > 1 GeV2, the virtual pho-
ton-nucleon invariant mass W > 2.3 GeV, and the mass
of undetected final-state particles W ′ > 1.6 GeV. The
kinematic coverage was in the valence quark region for
values of the Bjorken scaling variable in 0.16 < x < 0.35
at a scale of 1.4 < Q2 < 2.7GeV2. The range of measured
hadron transverse momentum Ph⊥ was 0.24-0.44 GeV.
The fraction z of the energy transfer carried by the ob-
served hadron was confined by the HRS momentum ac-
ceptance to a small range about z ∼ 0.5-0.6. Events
were divided into four x-bins with equivalent statistics.
At high x, the azimuthal acceptance in φh−φS was close
to 2π, while at lower x, roughly half of the 2π range
was covered, including the regions of maximal and mini-
mal sensitivity to Acos(φh−φS)

LT at cos (φh − φS) ∼ ±1 and
zero, respectively. The central kinematics were presented
in Ref. [30].

The beam-helicity DSA was formed from the mea-
sured yields as in Eq. (1). The azimuthal asymme-
try in each x-bin was extracted directly using an az-
imuthally unbinned maximum likelihood estimator with
corrections for the accumulated beam charge, the data
acquisition livetime, and the beam and target polariza-
tions. The result was confirmed by an independent bin-
ning-and-fitting procedure [30]. The sign of the asymme-
try was cross-checked with that of the known asymmetry
of 3 !He(!e, e′) elastic and quasi-elastic scattering on lon-
gitudinally and transversely polarized targets [39]. The
small amount of unpolarized N2 used in the target cell to
reduce depolarization diluted the measured 3He asymme-
try, which was corrected for the nitrogen dilution defined
as

fN2
≡

NN2
σN2

N3Heσ3He +NN2
σN2

, (2)

[PRL 108 (2012) 052001]
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function
is just a forward scattering amplitude,
how can it contain an interference?
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a T-odd effect!
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It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are
final (or initial) state interactions ... and may be
process dependent ! new universality issues e.g. Drell-Yan

It looks like higher-twist ... but no, these are soft gluons: 
“gauge links” required for color gauge invariance

T-odd TMDs → gauge links and L
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A Tantalizing Picture

• Transversity: h1,u > 0   h1,d < 0 
     → same as g1,u and g1,d in NR limit

• Sivers:        f1T⊥,u < 0    f1T⊥,d > 0
     → relatn to anomalous magnetic moment*
f1T⊥,q ∼ κq  where  κu ≈ +1.67   κd ≈ –2.03
 values achieve κp,n = Σq eq κq with u,d only

• Boer-Mulders: follows that h1⊥,u  and h1⊥,d < 0  ?
     → results on <cos(2Φ)>UU  suggest yes:

u d

du

   * Burkardt PRD72 (2005) 094020; 
   Barone et al PRD78 (1008) 045022;
  

u d
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Meson Cloud on an Envelope → It ORBITS

|p> = p + Nπ 
             + Δπ + ... 

Pions have JP = 0–  = negative parity ...
→ NEED L = 1 to get protonʼs JP = ½+

Nπ cloud:

2/3   n π+

1/3   p π0 
⊗

2/3   Lz = +1
1/3   Lz = 0

πN
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the latter correlation is stronger than the one between
transverse quark and nucleon spin.

Figure 5 shows the n ! 2 moment of the densities.
Obviously, the pattern is very similar to that in Fig. 4,
which supports our simple interpretation. The main differ-
ence is that the densities for the higher n ! 2 moment are
more peaked around the origin b? ! 0 as already observed
in [27] for the vector and axial vector GFFs.

Conclusions.—We have presented first lattice results for
the lowest two moments of transverse spin densities of
quarks in the nucleon. Because of the large and positive

contributions from the tensor GFF !BTn0 for up and for
down quarks, we find strongly distorted spin densities for
transversely polarized quarks in an unpolarized nucleon.
According to Burkardt [7], this leads to the prediction of a
sizable negative Boer-Mulders function [4] for up and
down quarks, which may be confirmed in experiments at,
e.g., Jefferson Lab and GSI Facility for Antiproton and Ion
Research [28,29].

The numerical calculations have been performed on the
Hitachi No. SR8000 at LRZ (Munich), the apeNEXT at
NIC/DESY (Zeuthen), and the BlueGene/L at NIC/FZJ
(Jülich), EPCC (Edinburgh), and KEK (by the Kanazawa
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[21] D. Brömmel et al., arXiv:hep-lat/0608021.
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Fig. 1. The left panel shows the results of the present semi-phenomenological extraction of the total angular momenta as well
as the orbital angular momenta of up- and down-quarks, while the right panel shows the corresponding results of Thomas [11].
In both panels, the open circle, open triangle, filled circle, and filled triangle, respectively, represent the predictions of the LHPC
lattice simulations for 2Ju, 2 Jd, 2 Lu, and 2 Ld [27].

works to exclude some range of lattice QCD predictions.
In the following, we therefore regard Bu+d

20 (0) as an un-
known constant within this bound. (Note that it is a con-
servative bound since it is actually given at the low-energy
model scale and the magnitude of Bu+d

20 (0) is a decreasing
function of the scale parameter Q2.)

The information on the quark orbital momenta can
be obtained from Ju, Jd and Js by subtracting the cor-
responding intrinsics spin contributions, ∆Σu, ∆Σd and
∆Σs. Basically, they are all empirically known quantities.
(Note that, at the leading order, any of these three are
scale independent.) Among the three combinations ∆ΣQ,
∆Σu−d, and ∆Σu+d−2s, the flavor singlet one has a largest
uncertainty. For simplicity, here we use the central value
of the recent HERMES analysis, i.e. ∆ΣQ = 0.33, by ne-
glecting the error bars.

For completeness, we list below all the initial condi-
tions at Q2 = 4GeV2, which we shall use in the present
analysis:

〈x〉Q = 0.579, 〈x〉u−d = 0.158, 〈x〉s = 0.041, (3)

Bu−d
20 = 0.274, 0 ≥ BQ

20 = Bu+d−2s
20 ≥ − 0.12, (4)

∆ΣQ = 0.33, ∆Σu−d =1.27, ∆Σu+d−2s =0.586. (5)

(The inclusion of the strange-quark contributions to the
momentum fractions and the longitudinal quark polariza-
tion appears inconsistent with the neglect of the corre-
sponding contribution to B20. It is, however, clear that the
influence of the strange-quark components is so small that
it never affects the main point of the present analysis.)

After preparing all the necessary information, we now
evaluate the total angular momentum as well as the orbital
angular momentum of any quark flavor as functions of Q2.
The answers for 2Ju, 2Jd as well as for 2Lu, 2Ld are
shown in the left panel of fig. 1, respectively by the solid,
short-dashed, long-dashed, and dash-dotted curves with

shaded areas. The open circle, open triangle, filled circle,
and filled triangle in the same figure represent the predic-
tions of the latest LHPC Collaboration for 2Ju, 2Jd, 2Lu,
and 2Ld. For comparison, the corresponding predictions of
Thomas’ analysis [8] are shown in the right panel. One im-
mediately notices that the difference between our analysis
and Thomas’ one is sizable. The most significant qualita-
tive difference appears in the orbital angular momenta. As
already mentioned, Thomas’ analysis shows that the or-
bital angular momenta of up- and down-quarks cross over
around the scale of 0.5GeV. In contrast, no crossover of
Lu and Ld is observed in our analysis: Ld remains to be
larger than Lu down to the scale where the gluon mo-
mentum fraction vanishes. Comparing the two panels, the
cause of this difference seems obvious. Thomas claims that
his results are qualitatively consistent with the empirical
information as well as the lattice QCD data at a high en-
ergy scale. (We recall that the sign of Lu−d at the high
energy scale is constrained by the asymptotic condition
Lu−d(Q2 → ∞) = − 1

2 ∆Σu−d, which is a necessary con-
sequence of QCD evolution [18,8].) However, the discrep-
ancy between his results and the recent lattice QCD pre-
dictions seems to be never small as is clear from the right
panel of fig. 1.

The above statement can also be deduced from a direct
comparison with the empirical information on Ju and Jd.
In fig. 2, we compare the prediction of our semi-empirical
analysis, that of Thomas’ analysis, and that of the re-
cent LHPC Collaboration, with the HERMES [29,30] and
JLab [31] determinations of Ju and Jd. One sees that,
by construction, the result of our analysis is fairly close
to that of the lattice QCD simulation. A slight difference
between them comes from the fact that we use the empir-
ical information (not the lattice QCD predictions) for the
momentum fractions and the longitudinal polarizations of
quarks. On the other hand, Thomas’ result considerably
deviates from the other two predictions. Although it is

quark 
model 
scale
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In both panels, the open circle, open triangle, filled circle, and filled triangle, respectively, represent the predictions of the LHPC
lattice simulations for 2Ju, 2 Jd, 2 Lu, and 2 Ld [27].

works to exclude some range of lattice QCD predictions.
In the following, we therefore regard Bu+d

20 (0) as an un-
known constant within this bound. (Note that it is a con-
servative bound since it is actually given at the low-energy
model scale and the magnitude of Bu+d

20 (0) is a decreasing
function of the scale parameter Q2.)

The information on the quark orbital momenta can
be obtained from Ju, Jd and Js by subtracting the cor-
responding intrinsics spin contributions, ∆Σu, ∆Σd and
∆Σs. Basically, they are all empirically known quantities.
(Note that, at the leading order, any of these three are
scale independent.) Among the three combinations ∆ΣQ,
∆Σu−d, and ∆Σu+d−2s, the flavor singlet one has a largest
uncertainty. For simplicity, here we use the central value
of the recent HERMES analysis, i.e. ∆ΣQ = 0.33, by ne-
glecting the error bars.

For completeness, we list below all the initial condi-
tions at Q2 = 4GeV2, which we shall use in the present
analysis:

〈x〉Q = 0.579, 〈x〉u−d = 0.158, 〈x〉s = 0.041, (3)

Bu−d
20 = 0.274, 0 ≥ BQ

20 = Bu+d−2s
20 ≥ − 0.12, (4)

∆ΣQ = 0.33, ∆Σu−d =1.27, ∆Σu+d−2s =0.586. (5)

(The inclusion of the strange-quark contributions to the
momentum fractions and the longitudinal quark polariza-
tion appears inconsistent with the neglect of the corre-
sponding contribution to B20. It is, however, clear that the
influence of the strange-quark components is so small that
it never affects the main point of the present analysis.)

After preparing all the necessary information, we now
evaluate the total angular momentum as well as the orbital
angular momentum of any quark flavor as functions of Q2.
The answers for 2Ju, 2Jd as well as for 2Lu, 2Ld are
shown in the left panel of fig. 1, respectively by the solid,
short-dashed, long-dashed, and dash-dotted curves with

shaded areas. The open circle, open triangle, filled circle,
and filled triangle in the same figure represent the predic-
tions of the latest LHPC Collaboration for 2Ju, 2Jd, 2Lu,
and 2Ld. For comparison, the corresponding predictions of
Thomas’ analysis [8] are shown in the right panel. One im-
mediately notices that the difference between our analysis
and Thomas’ one is sizable. The most significant qualita-
tive difference appears in the orbital angular momenta. As
already mentioned, Thomas’ analysis shows that the or-
bital angular momenta of up- and down-quarks cross over
around the scale of 0.5GeV. In contrast, no crossover of
Lu and Ld is observed in our analysis: Ld remains to be
larger than Lu down to the scale where the gluon mo-
mentum fraction vanishes. Comparing the two panels, the
cause of this difference seems obvious. Thomas claims that
his results are qualitatively consistent with the empirical
information as well as the lattice QCD data at a high en-
ergy scale. (We recall that the sign of Lu−d at the high
energy scale is constrained by the asymptotic condition
Lu−d(Q2 → ∞) = − 1

2 ∆Σu−d, which is a necessary con-
sequence of QCD evolution [18,8].) However, the discrep-
ancy between his results and the recent lattice QCD pre-
dictions seems to be never small as is clear from the right
panel of fig. 1.

The above statement can also be deduced from a direct
comparison with the empirical information on Ju and Jd.
In fig. 2, we compare the prediction of our semi-empirical
analysis, that of Thomas’ analysis, and that of the re-
cent LHPC Collaboration, with the HERMES [29,30] and
JLab [31] determinations of Ju and Jd. One sees that,
by construction, the result of our analysis is fairly close
to that of the lattice QCD simulation. A slight difference
between them comes from the fact that we use the empir-
ical information (not the lattice QCD predictions) for the
momentum fractions and the longitudinal polarizations of
quarks. On the other hand, Thomas’ result considerably
deviates from the other two predictions. Although it is
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... and Longitudinal spin on the lattice ...Thomas, 
PRL101 (2008)
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scale
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2 Ju

2 Jd

2 Ld

Thomas:  cloudy bag model evolved up to Q2 of expt / lattice

→ lattice shows Lu < 0 and Ld > 0 in longitudinal case at exptʼal scales!

Evolution might explain disagreement with quark models ... 
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Fig. 1. The left panel shows the results of the present semi-phenomenological extraction of the total angular momenta as well
as the orbital angular momenta of up- and down-quarks, while the right panel shows the corresponding results of Thomas [11].
In both panels, the open circle, open triangle, filled circle, and filled triangle, respectively, represent the predictions of the LHPC
lattice simulations for 2Ju, 2 Jd, 2 Lu, and 2 Ld [27].

works to exclude some range of lattice QCD predictions.
In the following, we therefore regard Bu+d

20 (0) as an un-
known constant within this bound. (Note that it is a con-
servative bound since it is actually given at the low-energy
model scale and the magnitude of Bu+d

20 (0) is a decreasing
function of the scale parameter Q2.)

The information on the quark orbital momenta can
be obtained from Ju, Jd and Js by subtracting the cor-
responding intrinsics spin contributions, ∆Σu, ∆Σd and
∆Σs. Basically, they are all empirically known quantities.
(Note that, at the leading order, any of these three are
scale independent.) Among the three combinations ∆ΣQ,
∆Σu−d, and ∆Σu+d−2s, the flavor singlet one has a largest
uncertainty. For simplicity, here we use the central value
of the recent HERMES analysis, i.e. ∆ΣQ = 0.33, by ne-
glecting the error bars.

For completeness, we list below all the initial condi-
tions at Q2 = 4GeV2, which we shall use in the present
analysis:

〈x〉Q = 0.579, 〈x〉u−d = 0.158, 〈x〉s = 0.041, (3)

Bu−d
20 = 0.274, 0 ≥ BQ

20 = Bu+d−2s
20 ≥ − 0.12, (4)

∆ΣQ = 0.33, ∆Σu−d =1.27, ∆Σu+d−2s =0.586. (5)

(The inclusion of the strange-quark contributions to the
momentum fractions and the longitudinal quark polariza-
tion appears inconsistent with the neglect of the corre-
sponding contribution to B20. It is, however, clear that the
influence of the strange-quark components is so small that
it never affects the main point of the present analysis.)

After preparing all the necessary information, we now
evaluate the total angular momentum as well as the orbital
angular momentum of any quark flavor as functions of Q2.
The answers for 2Ju, 2Jd as well as for 2Lu, 2Ld are
shown in the left panel of fig. 1, respectively by the solid,
short-dashed, long-dashed, and dash-dotted curves with

shaded areas. The open circle, open triangle, filled circle,
and filled triangle in the same figure represent the predic-
tions of the latest LHPC Collaboration for 2Ju, 2Jd, 2Lu,
and 2Ld. For comparison, the corresponding predictions of
Thomas’ analysis [8] are shown in the right panel. One im-
mediately notices that the difference between our analysis
and Thomas’ one is sizable. The most significant qualita-
tive difference appears in the orbital angular momenta. As
already mentioned, Thomas’ analysis shows that the or-
bital angular momenta of up- and down-quarks cross over
around the scale of 0.5GeV. In contrast, no crossover of
Lu and Ld is observed in our analysis: Ld remains to be
larger than Lu down to the scale where the gluon mo-
mentum fraction vanishes. Comparing the two panels, the
cause of this difference seems obvious. Thomas claims that
his results are qualitatively consistent with the empirical
information as well as the lattice QCD data at a high en-
ergy scale. (We recall that the sign of Lu−d at the high
energy scale is constrained by the asymptotic condition
Lu−d(Q2 → ∞) = − 1

2 ∆Σu−d, which is a necessary con-
sequence of QCD evolution [18,8].) However, the discrep-
ancy between his results and the recent lattice QCD pre-
dictions seems to be never small as is clear from the right
panel of fig. 1.

The above statement can also be deduced from a direct
comparison with the empirical information on Ju and Jd.
In fig. 2, we compare the prediction of our semi-empirical
analysis, that of Thomas’ analysis, and that of the re-
cent LHPC Collaboration, with the HERMES [29,30] and
JLab [31] determinations of Ju and Jd. One sees that,
by construction, the result of our analysis is fairly close
to that of the lattice QCD simulation. A slight difference
between them comes from the fact that we use the empir-
ical information (not the lattice QCD predictions) for the
momentum fractions and the longitudinal polarizations of
quarks. On the other hand, Thomas’ result considerably
deviates from the other two predictions. Although it is

2 Lu
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Fig. 1. The left panel shows the results of the present semi-phenomenological extraction of the total angular momenta as well
as the orbital angular momenta of up- and down-quarks, while the right panel shows the corresponding results of Thomas [11].
In both panels, the open circle, open triangle, filled circle, and filled triangle, respectively, represent the predictions of the LHPC
lattice simulations for 2Ju, 2 Jd, 2 Lu, and 2 Ld [27].

works to exclude some range of lattice QCD predictions.
In the following, we therefore regard Bu+d

20 (0) as an un-
known constant within this bound. (Note that it is a con-
servative bound since it is actually given at the low-energy
model scale and the magnitude of Bu+d

20 (0) is a decreasing
function of the scale parameter Q2.)

The information on the quark orbital momenta can
be obtained from Ju, Jd and Js by subtracting the cor-
responding intrinsics spin contributions, ∆Σu, ∆Σd and
∆Σs. Basically, they are all empirically known quantities.
(Note that, at the leading order, any of these three are
scale independent.) Among the three combinations ∆ΣQ,
∆Σu−d, and ∆Σu+d−2s, the flavor singlet one has a largest
uncertainty. For simplicity, here we use the central value
of the recent HERMES analysis, i.e. ∆ΣQ = 0.33, by ne-
glecting the error bars.

For completeness, we list below all the initial condi-
tions at Q2 = 4 GeV2, which we shall use in the present
analysis:

〈x〉Q = 0.579, 〈x〉u−d = 0.158, 〈x〉s = 0.041, (3)

Bu−d
20 = 0.274, 0 ≥ BQ

20 = Bu+d−2s
20 ≥ − 0.12, (4)

∆ΣQ = 0.33, ∆Σu−d =1.27, ∆Σu+d−2s =0.586. (5)

(The inclusion of the strange-quark contributions to the
momentum fractions and the longitudinal quark polariza-
tion appears inconsistent with the neglect of the corre-
sponding contribution to B20. It is, however, clear that the
influence of the strange-quark components is so small that
it never affects the main point of the present analysis.)

After preparing all the necessary information, we now
evaluate the total angular momentum as well as the orbital
angular momentum of any quark flavor as functions of Q2.
The answers for 2Ju, 2Jd as well as for 2Lu, 2Ld are
shown in the left panel of fig. 1, respectively by the solid,
short-dashed, long-dashed, and dash-dotted curves with

shaded areas. The open circle, open triangle, filled circle,
and filled triangle in the same figure represent the predic-
tions of the latest LHPC Collaboration for 2Ju, 2Jd, 2Lu,
and 2Ld. For comparison, the corresponding predictions of
Thomas’ analysis [8] are shown in the right panel. One im-
mediately notices that the difference between our analysis
and Thomas’ one is sizable. The most significant qualita-
tive difference appears in the orbital angular momenta. As
already mentioned, Thomas’ analysis shows that the or-
bital angular momenta of up- and down-quarks cross over
around the scale of 0.5GeV. In contrast, no crossover of
Lu and Ld is observed in our analysis: Ld remains to be
larger than Lu down to the scale where the gluon mo-
mentum fraction vanishes. Comparing the two panels, the
cause of this difference seems obvious. Thomas claims that
his results are qualitatively consistent with the empirical
information as well as the lattice QCD data at a high en-
ergy scale. (We recall that the sign of Lu−d at the high
energy scale is constrained by the asymptotic condition
Lu−d(Q2 → ∞) = − 1

2 ∆Σu−d, which is a necessary con-
sequence of QCD evolution [18,8].) However, the discrep-
ancy between his results and the recent lattice QCD pre-
dictions seems to be never small as is clear from the right
panel of fig. 1.

The above statement can also be deduced from a direct
comparison with the empirical information on Ju and Jd.
In fig. 2, we compare the prediction of our semi-empirical
analysis, that of Thomas’ analysis, and that of the re-
cent LHPC Collaboration, with the HERMES [29,30] and
JLab [31] determinations of Ju and Jd. One sees that,
by construction, the result of our analysis is fairly close
to that of the lattice QCD simulation. A slight difference
between them comes from the fact that we use the empir-
ical information (not the lattice QCD predictions) for the
momentum fractions and the longitudinal polarizations of
quarks. On the other hand, Thomas’ result considerably
deviates from the other two predictions. Although it is

 or not.  Wakamatsu evolves down → insensitive to uncertain scale of quark models

Wakamatsu, 
EPJA44 (2010)
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The Mysterious E
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• ∫ E dx = Pauli F2  →(t=0)  anomalous mag moment κ    ∵ GPD basics

• both F2 and κ  require L ≠ 0                          ∵ N spin-flip amplitudes

• Density shifts seen on lattice due to GPD Eq(x,ξ,t)
• E requires L

The Mysterious E
Brodksy, Drell (1980) ; Burkardt, Schnell, PRD 74 (2006)

• Density shifts + lensing function = Sivers (model-dependent)
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• ∫ E dx = Pauli F2  →(t=0)  anomalous mag moment κ    ∵ GPD basics

• both F2 and κ  require L ≠ 0                          ∵ N spin-flip amplitudes

• Density shifts seen on lattice due to GPD Eq(x,ξ,t)
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Contradiction?
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• ∫ E dx = Pauli F2  →(t=0)  anomalous mag moment κ    ∵ GPD basics
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Proton Spin Decompositions
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✘  access Δg: no GI sepn of Δg, Lg  

✔ measure Lq  (expt & lattice):
        yes → via GPDs & DVCS

✘  interpret Lq: covariant derivative 
      Dµ = ∂µ + igµ ← gluon interacʼs 

Ji: ➌ gauge invariant Δq, Lq, Jg 
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Proton Spin Decompositions

J Ji

J Jaffe

Ji, PRL 78 (1997) Jaffe & Bashinsky, 
NPB 536 (1998)

Lq Δq Lg Δg

✘  access Δg: no GI sepn of Δg, Lg  

✔ measure Lq  (expt & lattice):
        yes → via GPDs & DVCS

✘  interpret Lq: covariant derivative 
      Dµ = ∂µ + igµ ← gluon interacʼs 

Ji: ➌ gauge invariant Δq, Lq, Jg Jaffe: ➍ gauge invar Δq, Lq, Δg, Lg 
✔ access Δg: this is whatʼs being
        measured at RHIC, COMPASS

✔ interpret Lq:            → field-free
        OAM ... in ∞ momentum frame

✘  measure Lq  (expt & lattice):
        involves non-local operators
        except in lightcone gauge A+=0
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✔ measure Lq  (expt & lattice):
        yes → via GPDs & DVCS

✘  interpret Lq: covariant derivative 
      Dµ = ∂µ + igµ ← gluon interacʼs 
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see ongoing work of Wakamatsu PRD 81 (2010), 83 (2011)
    & Chen et al  PRL 100 (2008), 103 (2009) 
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so “dynamical” p – eA is the observable one ... 
Solenoid I decreases to zero ...

dB/dt induces E → rotates cylinders
Solenoid with constant I;

charged cylinders stationary
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so “dynamical” p – eA is the observable one ... 
Solenoid I decreases to zero ...

dB/dt induces E → rotates cylinders
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=  ẑ  µ0nIQ

2
a2

outer –Q cylinder:

 


L− = − ẑ  
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for s < R

 


Eind = φ̂  

µ0n | I | s
2

 


Eind = φ̂  

µ0n | I | R
2

2s

inner +Q cylinder:

 


L+ = aŝ ×Q
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Solenoid I decreases to zero ...

dB/dt induces E → rotates cylinders

 
∴

℘field =


S / c2

= − ẑ
µ0nIQ
2

(R2 − a2 )

for s < R

for s > R

 

∴

Lcylinders = − ẑ  

µ0nIQ
2

(R2 − a2 )

 
= ε0

E ×

B

= −φ̂ µ0nIQ
2πls

Solenoid with constant I;
charged cylinders stationary

 


E =

Q ŝ
2πε0ls

for a < s < b

 


B = µ0nI ẑ
for s < R

 


Eind = φ̂  

µ0n | I | s
2

 


Eind = φ̂  

µ0n | I | R
2

2s

inner +Q cylinder:

 


L+ = aŝ ×Q


Eind s=a

dt∫
=  ẑ  µ0nIQ

2
a2

outer –Q cylinder:

 


L− = − ẑ  

µ0nIQ
2

R2

 

∴

Lfield = sŝ ×


℘field dV

s=a

s=R

∫

Both needed 
to conserve 

L, but ...

mechanical 
Lcylinder 

= r x p is
• measurable     
• distinct from

r x (E x B)

classical intuition 
doesnʼt help with the
meaning of gauge-

covariant iDµ = i∂µ–eAµ 
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Fig. 2. The HERMES and JLab Hall A determination of the
quark angular momentum Ju and Jd [29–31] in comparison
with our semi-empirical prediction. Also shown for comparison
are the recent lattice QCD prediction by the LHPC Collabo-
ration [27] and the result of Thomas’ analysis [11].

consistent with the HERMES data, it lies outside the er-
ror band of JLab analysis. The latter observation is mainly
related to the fact that his estimate for Jd is sizably larger
than the lattice QCD data or our estimate and his esti-
mate for Jd is smaller in magnitude than the other two.
(One must be careful about the fact, however, that the ex-
perimental extraction of Ju and Jd has a large dependence
on the theoretical assumption of the parametrization of
relevant GPDs and it should be taken as qualitative at
the present stage.)

So far, to avoid introducing inessential complexities
into our simple analysis, we did not pay enough care to
the errors of the empirical and semi-empirical information
given at the scale Q2 = 4GeV2, except for the quantity
Bu+d

20 (0) having the largest uncertainty. One may worry
about how strongly the conclusion of the present anal-
ysis depends on the ambiguities of the other quantities
prepared at Q2 = 4GeV2. Fortunately, for the isovector
quantity Lu−d ≡ Lu − Ld, which is of our primary con-
cern in the present paper, one can deduce that our central
conclusion is not altered by these uncertainties. To see it,
let us first recall the relation

2Lu−d =
[
〈x〉u−d + Bu−d

20 (0)
]
− ∆Σu−d. (6)

Here, ∆Σu−d = g(I=1)
A is scale independent and known

with high precision, i.e. within 0.3%. The momentum
fraction 〈x〉u−d is also known with fairly good precision.
In fact, the difference between the familiar MRST2004
and CTEQ5 fits at Q2 = 4GeV2 turns out to be
within 1%. The main uncertainty then comes from the
isovector anomalous gravitomagnetic moment of the nu-
cleon Bu−d

20 (0). We recall again the predictions of the
two lattice QCD Collaborations at Q2 = 4 GeV2, i.e.
Bu−d

20 (0) = 0.274 ± 0.037 from the LHPC Collaboration
and Bu−d

20 (0) = 0.269 ± 0.020 from the QCDSF-UKQCD
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Fig. 3. The sensitivity of the quark orbital angular-momentum
difference 2 (Lu − Ld) to the initial condition given at Q2 =
4 GeV2. The filled area with dark grey is obtained with the
LHPC prediction Bu−d

20 (0) = 0.274 ± 0.037 given at Q2 =
4 GeV, while the filled area with light grey is obtained by
artificially doubling the error of the LHPC prediction [27].
Also shown by the filled square is the prediction of the im-
proved cloudy bag model corresponding to the scale Q2

0 =
0.16 GeV2 [8].

Collaboration, and also the prediction of the CQSM
evolved to the same energy scale Bu−d

20 (0) % 0.289. In
the analysis so far, we have used the central value of the
LHPC prediction by simply neglecting the error bar. Now
let us take account of the error bar and see how large
this uncertainty would propagate and affect the value of
Lu−d at the low-energy model scale. (Note that the er-
ror estimate of the LHPC group is most conservative and
the prediction of the QCDSF-UKQCD group and that of
the CQSM are contained in the error band of this LHPC
analysis.)

The filled area with dark grey in fig. 3 show the result
of this downward evolution of 2Lu−d by starting with the
initial condition given at Q2 = 4GeV2 on account of this
error band. In consideration of the possibility of the incom-
plete nature of the present-day lattice QCD predictions
(and also small uncertainties of the other two quantities
〈x〉u−d and ∆Σu−d), we have also carried out a similar
analysis in which the error bar of the LHPC prediction
is artificially doubled. The result of this latter analysis is
shown by the filled area with light grey. One can clearly
see that the quantity 2Lu−d remains negative even down
to the lower energy scale close to the unitarity-violating
bound, which appears to be very different from the pre-
diction of the refined cloudy bag model shown by the filled
square in the same figure.

In any case, our semi-phenomenological analysis,
which is consistent with the empirical information as well
as the lattice QCD data for Ju and Jd at high energies,
indicates that Lu − Ld remains fairly large and negative
even at the low energy scale of nonperturbative QCD. If
this is in fact confirmed, it may as well be called “new or

Theory: Jiʼs Lu–d is rock-solid & negative

2 (Lu –Ld)
Ji definition

• <x>u–d: well known
• Δu–Δd = gA: well known
• E(2)u–d: all lattice calculatns

           and XQSM agree
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Fig. 2. The HERMES and JLab Hall A determination of the
quark angular momentum Ju and Jd [29–31] in comparison
with our semi-empirical prediction. Also shown for comparison
are the recent lattice QCD prediction by the LHPC Collabo-
ration [27] and the result of Thomas’ analysis [11].

consistent with the HERMES data, it lies outside the er-
ror band of JLab analysis. The latter observation is mainly
related to the fact that his estimate for Jd is sizably larger
than the lattice QCD data or our estimate and his esti-
mate for Jd is smaller in magnitude than the other two.
(One must be careful about the fact, however, that the ex-
perimental extraction of Ju and Jd has a large dependence
on the theoretical assumption of the parametrization of
relevant GPDs and it should be taken as qualitative at
the present stage.)

So far, to avoid introducing inessential complexities
into our simple analysis, we did not pay enough care to
the errors of the empirical and semi-empirical information
given at the scale Q2 = 4GeV2, except for the quantity
Bu+d

20 (0) having the largest uncertainty. One may worry
about how strongly the conclusion of the present anal-
ysis depends on the ambiguities of the other quantities
prepared at Q2 = 4GeV2. Fortunately, for the isovector
quantity Lu−d ≡ Lu − Ld, which is of our primary con-
cern in the present paper, one can deduce that our central
conclusion is not altered by these uncertainties. To see it,
let us first recall the relation

2Lu−d =
[
〈x〉u−d + Bu−d

20 (0)
]
− ∆Σu−d. (6)

Here, ∆Σu−d = g(I=1)
A is scale independent and known

with high precision, i.e. within 0.3%. The momentum
fraction 〈x〉u−d is also known with fairly good precision.
In fact, the difference between the familiar MRST2004
and CTEQ5 fits at Q2 = 4GeV2 turns out to be
within 1%. The main uncertainty then comes from the
isovector anomalous gravitomagnetic moment of the nu-
cleon Bu−d

20 (0). We recall again the predictions of the
two lattice QCD Collaborations at Q2 = 4 GeV2, i.e.
Bu−d

20 (0) = 0.274 ± 0.037 from the LHPC Collaboration
and Bu−d

20 (0) = 0.269 ± 0.020 from the QCDSF-UKQCD
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Fig. 3. The sensitivity of the quark orbital angular-momentum
difference 2 (Lu − Ld) to the initial condition given at Q2 =
4 GeV2. The filled area with dark grey is obtained with the
LHPC prediction Bu−d

20 (0) = 0.274 ± 0.037 given at Q2 =
4 GeV, while the filled area with light grey is obtained by
artificially doubling the error of the LHPC prediction [27].
Also shown by the filled square is the prediction of the im-
proved cloudy bag model corresponding to the scale Q2

0 =
0.16 GeV2 [8].

Collaboration, and also the prediction of the CQSM
evolved to the same energy scale Bu−d

20 (0) % 0.289. In
the analysis so far, we have used the central value of the
LHPC prediction by simply neglecting the error bar. Now
let us take account of the error bar and see how large
this uncertainty would propagate and affect the value of
Lu−d at the low-energy model scale. (Note that the er-
ror estimate of the LHPC group is most conservative and
the prediction of the QCDSF-UKQCD group and that of
the CQSM are contained in the error band of this LHPC
analysis.)

The filled area with dark grey in fig. 3 show the result
of this downward evolution of 2Lu−d by starting with the
initial condition given at Q2 = 4GeV2 on account of this
error band. In consideration of the possibility of the incom-
plete nature of the present-day lattice QCD predictions
(and also small uncertainties of the other two quantities
〈x〉u−d and ∆Σu−d), we have also carried out a similar
analysis in which the error bar of the LHPC prediction
is artificially doubled. The result of this latter analysis is
shown by the filled area with light grey. One can clearly
see that the quantity 2Lu−d remains negative even down
to the lower energy scale close to the unitarity-violating
bound, which appears to be very different from the pre-
diction of the refined cloudy bag model shown by the filled
square in the same figure.

In any case, our semi-phenomenological analysis,
which is consistent with the empirical information as well
as the lattice QCD data for Ju and Jd at high energies,
indicates that Lu − Ld remains fairly large and negative
even at the low energy scale of nonperturbative QCD. If
this is in fact confirmed, it may as well be called “new or

Theory: Jiʼs Lu–d is rock-solid & negative

2 (Lu –Ld)
Ji definition

• <x>u–d: well known
• Δu–Δd = gA: well known
• E(2)u–d: all lattice calculatns

           and XQSM agree

Compare Jaffe & Ji 
calculate explicitly in χQSM;

at quark-model scale:

Lu–d
Jaffe

Lu–d
Ji

Valence

Sea

Total

+0.147 –0.142

–0.265 –0.188

–0.115 –0.330

Negative model value 
dominated by sea quark L !
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Fig. 2. The HERMES and JLab Hall A determination of the
quark angular momentum Ju and Jd [29–31] in comparison
with our semi-empirical prediction. Also shown for comparison
are the recent lattice QCD prediction by the LHPC Collabo-
ration [27] and the result of Thomas’ analysis [11].

consistent with the HERMES data, it lies outside the er-
ror band of JLab analysis. The latter observation is mainly
related to the fact that his estimate for Jd is sizably larger
than the lattice QCD data or our estimate and his esti-
mate for Jd is smaller in magnitude than the other two.
(One must be careful about the fact, however, that the ex-
perimental extraction of Ju and Jd has a large dependence
on the theoretical assumption of the parametrization of
relevant GPDs and it should be taken as qualitative at
the present stage.)

So far, to avoid introducing inessential complexities
into our simple analysis, we did not pay enough care to
the errors of the empirical and semi-empirical information
given at the scale Q2 = 4GeV2, except for the quantity
Bu+d

20 (0) having the largest uncertainty. One may worry
about how strongly the conclusion of the present anal-
ysis depends on the ambiguities of the other quantities
prepared at Q2 = 4GeV2. Fortunately, for the isovector
quantity Lu−d ≡ Lu − Ld, which is of our primary con-
cern in the present paper, one can deduce that our central
conclusion is not altered by these uncertainties. To see it,
let us first recall the relation

2Lu−d =
[
〈x〉u−d + Bu−d

20 (0)
]
− ∆Σu−d. (6)

Here, ∆Σu−d = g(I=1)
A is scale independent and known

with high precision, i.e. within 0.3%. The momentum
fraction 〈x〉u−d is also known with fairly good precision.
In fact, the difference between the familiar MRST2004
and CTEQ5 fits at Q2 = 4GeV2 turns out to be
within 1%. The main uncertainty then comes from the
isovector anomalous gravitomagnetic moment of the nu-
cleon Bu−d

20 (0). We recall again the predictions of the
two lattice QCD Collaborations at Q2 = 4 GeV2, i.e.
Bu−d

20 (0) = 0.274 ± 0.037 from the LHPC Collaboration
and Bu−d

20 (0) = 0.269 ± 0.020 from the QCDSF-UKQCD
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Fig. 3. The sensitivity of the quark orbital angular-momentum
difference 2 (Lu − Ld) to the initial condition given at Q2 =
4 GeV2. The filled area with dark grey is obtained with the
LHPC prediction Bu−d

20 (0) = 0.274 ± 0.037 given at Q2 =
4 GeV, while the filled area with light grey is obtained by
artificially doubling the error of the LHPC prediction [27].
Also shown by the filled square is the prediction of the im-
proved cloudy bag model corresponding to the scale Q2

0 =
0.16 GeV2 [8].

Collaboration, and also the prediction of the CQSM
evolved to the same energy scale Bu−d

20 (0) % 0.289. In
the analysis so far, we have used the central value of the
LHPC prediction by simply neglecting the error bar. Now
let us take account of the error bar and see how large
this uncertainty would propagate and affect the value of
Lu−d at the low-energy model scale. (Note that the er-
ror estimate of the LHPC group is most conservative and
the prediction of the QCDSF-UKQCD group and that of
the CQSM are contained in the error band of this LHPC
analysis.)

The filled area with dark grey in fig. 3 show the result
of this downward evolution of 2Lu−d by starting with the
initial condition given at Q2 = 4GeV2 on account of this
error band. In consideration of the possibility of the incom-
plete nature of the present-day lattice QCD predictions
(and also small uncertainties of the other two quantities
〈x〉u−d and ∆Σu−d), we have also carried out a similar
analysis in which the error bar of the LHPC prediction
is artificially doubled. The result of this latter analysis is
shown by the filled area with light grey. One can clearly
see that the quantity 2Lu−d remains negative even down
to the lower energy scale close to the unitarity-violating
bound, which appears to be very different from the pre-
diction of the refined cloudy bag model shown by the filled
square in the same figure.

In any case, our semi-phenomenological analysis,
which is consistent with the empirical information as well
as the lattice QCD data for Ju and Jd at high energies,
indicates that Lu − Ld remains fairly large and negative
even at the low energy scale of nonperturbative QCD. If
this is in fact confirmed, it may as well be called “new or

Theory: Jiʼs Lu–d is rock-solid & negative

2 (Lu –Ld)
Ji definition

• <x>u–d: well known
• Δu–Δd = gA: well known
• E(2)u–d: all lattice calculatns

           and XQSM agree

Compare Jaffe & Ji 
calculate explicitly in χQSM;

at quark-model scale:

Lu–d
Jaffe

Lu–d
Ji

Valence

Sea

Total

+0.147 –0.142

–0.265 –0.188

–0.115 –0.330

Negative model value 
dominated by sea quark L !
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Fig. 2. The HERMES and JLab Hall A determination of the
quark angular momentum Ju and Jd [29–31] in comparison
with our semi-empirical prediction. Also shown for comparison
are the recent lattice QCD prediction by the LHPC Collabo-
ration [27] and the result of Thomas’ analysis [11].

consistent with the HERMES data, it lies outside the er-
ror band of JLab analysis. The latter observation is mainly
related to the fact that his estimate for Jd is sizably larger
than the lattice QCD data or our estimate and his esti-
mate for Jd is smaller in magnitude than the other two.
(One must be careful about the fact, however, that the ex-
perimental extraction of Ju and Jd has a large dependence
on the theoretical assumption of the parametrization of
relevant GPDs and it should be taken as qualitative at
the present stage.)

So far, to avoid introducing inessential complexities
into our simple analysis, we did not pay enough care to
the errors of the empirical and semi-empirical information
given at the scale Q2 = 4GeV2, except for the quantity
Bu+d

20 (0) having the largest uncertainty. One may worry
about how strongly the conclusion of the present anal-
ysis depends on the ambiguities of the other quantities
prepared at Q2 = 4GeV2. Fortunately, for the isovector
quantity Lu−d ≡ Lu − Ld, which is of our primary con-
cern in the present paper, one can deduce that our central
conclusion is not altered by these uncertainties. To see it,
let us first recall the relation

2Lu−d =
[
〈x〉u−d + Bu−d

20 (0)
]
− ∆Σu−d. (6)

Here, ∆Σu−d = g(I=1)
A is scale independent and known

with high precision, i.e. within 0.3%. The momentum
fraction 〈x〉u−d is also known with fairly good precision.
In fact, the difference between the familiar MRST2004
and CTEQ5 fits at Q2 = 4GeV2 turns out to be
within 1%. The main uncertainty then comes from the
isovector anomalous gravitomagnetic moment of the nu-
cleon Bu−d

20 (0). We recall again the predictions of the
two lattice QCD Collaborations at Q2 = 4 GeV2, i.e.
Bu−d

20 (0) = 0.274 ± 0.037 from the LHPC Collaboration
and Bu−d

20 (0) = 0.269 ± 0.020 from the QCDSF-UKQCD

!"#$

!$#%

!$#&

!$#'

!$#(

$#$

$#(

$#'

$#&

$#$ $#H "#$ "#H (#$ (#H I#$ I#H '#$

Fig. 3. The sensitivity of the quark orbital angular-momentum
difference 2 (Lu − Ld) to the initial condition given at Q2 =
4 GeV2. The filled area with dark grey is obtained with the
LHPC prediction Bu−d

20 (0) = 0.274 ± 0.037 given at Q2 =
4 GeV, while the filled area with light grey is obtained by
artificially doubling the error of the LHPC prediction [27].
Also shown by the filled square is the prediction of the im-
proved cloudy bag model corresponding to the scale Q2

0 =
0.16 GeV2 [8].

Collaboration, and also the prediction of the CQSM
evolved to the same energy scale Bu−d

20 (0) % 0.289. In
the analysis so far, we have used the central value of the
LHPC prediction by simply neglecting the error bar. Now
let us take account of the error bar and see how large
this uncertainty would propagate and affect the value of
Lu−d at the low-energy model scale. (Note that the er-
ror estimate of the LHPC group is most conservative and
the prediction of the QCDSF-UKQCD group and that of
the CQSM are contained in the error band of this LHPC
analysis.)

The filled area with dark grey in fig. 3 show the result
of this downward evolution of 2Lu−d by starting with the
initial condition given at Q2 = 4GeV2 on account of this
error band. In consideration of the possibility of the incom-
plete nature of the present-day lattice QCD predictions
(and also small uncertainties of the other two quantities
〈x〉u−d and ∆Σu−d), we have also carried out a similar
analysis in which the error bar of the LHPC prediction
is artificially doubled. The result of this latter analysis is
shown by the filled area with light grey. One can clearly
see that the quantity 2Lu−d remains negative even down
to the lower energy scale close to the unitarity-violating
bound, which appears to be very different from the pre-
diction of the refined cloudy bag model shown by the filled
square in the same figure.

In any case, our semi-phenomenological analysis,
which is consistent with the empirical information as well
as the lattice QCD data for Ju and Jd at high energies,
indicates that Lu − Ld remains fairly large and negative
even at the low energy scale of nonperturbative QCD. If
this is in fact confirmed, it may as well be called “new or

Theory: Jiʼs Lu–d is rock-solid & negative

2 (Lu –Ld)
Ji definition

• <x>u–d: well known
• Δu–Δd = gA: well known
• E(2)u–d: all lattice calculatns

           and XQSM agree

Compare Jaffe & Ji 
calculate explicitly in χQSM;

at quark-model scale:

Lu–d
Jaffe

Lu–d
Ji

Valence

Sea

Total

+0.147 –0.142

–0.265 –0.188

–0.115 –0.330

Negative model value 
dominated by sea quark L !

Spin-dependent Drell-Yan
with p or π+ beam & polʼd target

Need direct measurement of 
Sivers for sea quarks:

π+n
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• Disentangle quark flavours q → measure
   as many hadron species H,h as possible

• Disentangle distribution (f) and fragmentation (D)
       functions → measure all process

∑
q

e2
q f (H)

q (x) Dh′

q (z)
These are the only processes where 

TMD factorization is proven
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The Missing Spin 
Program: Drell-Yan

Drell-Yan

W production

• Crucial test of TMD formalism
→ sign change of T-odd functions

• A complete spin program requires 
multiple hadron species
→ nucleon & meson beams

• Clean access to sea quarks
e.g. 
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