An Experimental(ist's) Overview of TMDs

N.C.R. Makins

University of Illinois at Urbana-Champaign

- L + QCD = World's Greatest Puzzle! intuition out the window
- The State of the Data data from COMPASS, HERMES, JLab, and RHIC
- The State of L parton orbital angular momentum
- The Missing Spin Programme Drell-Yan + spin

$L+$ Relativity $=$ Weírdness

Dirac free planewave particle with $\operatorname{spin} \mathrm{S}_{\mathbf{z}}=+\mathbf{1}$

$$
\begin{aligned}
& \text { at rest } \vec{p}=0 \\
& \psi=\left(\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right) e^{-i m t} \quad \begin{array}{c}
\vec{p}^{\prime}=p^{\prime} \hat{x} \\
\text { in }-\mathbf{x ~ d i r e c}^{\mathbf{n}} \text { with } \\
\beta=p^{\prime} / E^{\prime}=\tanh \phi \\
\hat{B}(\hat{x}, \phi)=e^{\frac{q_{2}^{2, x}}{2}=\cosh \frac{\phi}{2} 1+\sinh \frac{\phi}{2} \alpha_{x}}
\end{array} \quad \psi^{\prime}=N\left(\begin{array}{c}
1 \\
0 \\
0 \\
\frac{p^{\prime}}{E^{\prime}+m}
\end{array}\right) e^{i\left(p^{\prime} x^{\prime}-E^{\prime} t^{\prime}\right)}
\end{aligned}
$$

Boosting a Dirac Spinor

Dirac free planewave particle with

Boosting a Dirac Spinor

 $\operatorname{spin} S_{z}=+1$$$
\begin{aligned}
& \text { at rest } \vec{p}=0 \\
& \psi=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) e^{-i m t} \\
& \text { BOOST } \\
& \text { in }-\mathbf{x} \text { direc }{ }^{n} \text { with } \\
& \beta=p^{\prime} / E^{\prime}=\tanh \phi \\
& \hat{B}(\hat{x}, \phi)=e^{\frac{\phi}{\bar{a}} \tilde{x}}=\cosh \frac{\phi}{2} 1+\sinh \frac{\phi}{2} \alpha_{x} \\
& \vec{p}^{\prime}=p^{\prime} \hat{x} \\
& \psi^{\prime}=N\left(\begin{array}{c}
1 \\
0 \\
0 \\
\frac{p^{\prime}}{E^{\prime}+m}
\end{array}\right) e^{i\left(p^{\prime} x^{\prime}-E^{\prime} t^{\prime}\right)}
\end{aligned}
$$

What's its spin?

$$
\begin{gathered}
\vec{\Sigma}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right) \\
\overrightarrow{\boldsymbol{\sigma}}=\left(\begin{array}{cc}
\hat{z} & \hat{x}-i \hat{y} \\
\hat{x}+i \hat{y} & -\hat{z}
\end{array}\right)
\end{gathered}
$$

Dirac free planewave particle with

Boosting a Dirac Spinor

 $\operatorname{spin} S_{z}=+1$

What's its spin?

$$
\frac{\psi^{\dagger} \overrightarrow{\boldsymbol{\Sigma}} \psi}{\psi^{\dagger} \psi}=\hat{z}
$$

$$
\vec{\Sigma}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right)
$$

$$
\vec{\sigma}=\left(\begin{array}{cc}
\hat{z} & \hat{x}-i \hat{y} \\
\hat{x}+i \hat{y} & -\hat{z}
\end{array}\right)
$$

Dirac free planewave particle with $\operatorname{spin} S_{z}=+1$

Boosting a Dirac Spinor

How is L_{z} affected by boosts?

$$
\begin{aligned}
& \text { at rest } \vec{p}=0 \\
& \psi=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) e^{-i m t} \\
& \text { BOOST } \\
& \text { in }-\mathrm{x} \text { direc }{ }^{\mathrm{n}} \text { with } \\
& \psi^{\prime}=N\left(\begin{array}{c}
1 \\
0 \\
0 \\
\frac{p^{\prime}}{E^{\prime}+m}
\end{array}\right) e^{i\left(p^{\prime} x^{\prime}-E^{\prime} t^{\prime}\right)} \\
& \text { What's its spin? } \\
& \frac{\psi^{\dagger} \vec{\Sigma} \psi}{\psi^{\dagger} \psi}=\hat{z} \\
& \overrightarrow{\boldsymbol{\Sigma}}=\left(\begin{array}{cc}
\overrightarrow{\boldsymbol{\sigma}} & 0 \\
0 & \vec{\sigma}
\end{array}\right) \\
& \vec{\sigma}=\left(\begin{array}{cc}
\hat{z} & \hat{x}-i \hat{y} \\
\hat{x}+i \hat{y} & -\hat{z}
\end{array}\right) \\
& \frac{\psi^{\prime \dagger} \overrightarrow{\boldsymbol{\Sigma}} \psi^{\prime}}{\psi^{\prime \dagger} \psi^{\prime}}=\hat{z}\left[1-\left(\frac{p^{\prime}}{E^{\prime}+m}\right)^{2}\right] \\
& \approx \hat{z} \frac{1}{\gamma^{2}} \quad \text { for } \gamma \gg 1
\end{aligned}
$$

Why there are no transversely polarized electron machines!

Boosting L

$$
M^{\mu \nu}=x^{\mu} p^{\nu}-x^{v} p^{\mu}=\left(\begin{array}{cccc}
0 & p_{x}-x \mathbf{\Sigma} & \imath p_{y}-y \mathbf{\Sigma} & p_{z}-z \mathbf{\Sigma} \\
\cdot & 0 & L_{z} & -L_{y} \\
\cdot & \cdot & 0 & L_{x} \\
\cdot & \cdot & \cdot & 0
\end{array}\right)
$$

Simple orbit with L_{z} only: $p_{z}=0, z=0 \rightarrow L_{x}=L_{y}=0 \ldots$ and apply boost β in $-x$ direction

Boosting L

$$
M^{\mu \nu}=x^{\mu} p^{\nu}-x^{v} p^{\mu}=\left(\begin{array}{cccc}
\cdot & 0 & L_{z} & -L_{y} \\
\cdot & \cdot & 0 & L_{x} \\
\cdot & \cdot & \cdot & 0
\end{array}\right)
$$

Simple orbit with L_{z} only: $p_{z}=0, z=0 \rightarrow L_{x}=L_{y}=0 \ldots$ and apply boost β in $-x$ direction

$$
\left(M^{\prime}\right)^{a b}=\Lambda_{\mu}^{a} \Lambda_{v_{v}}^{b} M^{\mu \nu}=\left(\begin{array}{cccc}
0 & t p_{x}-x E & \gamma\left(\left[t p_{y}-y E\right]-\beta L_{z}\right) & 0 \\
\cdot & 0 & \gamma\left(L_{z}-\beta\left[t p_{y}-y E\right]\right. & 0 \\
\cdot & \cdot & 0 & 0 \\
\cdot & \cdot & \cdot & 0
\end{array}\right)
$$

$\rightarrow L_{z}^{\prime}=\gamma L_{z}-\gamma \beta p_{y}(c t)+\gamma \beta y(E / c)$

Boosting L

$$
M^{\mu \nu}=x^{\mu} p^{\nu}-x^{v} p^{\mu}=\left(\begin{array}{cccc}
\cdot & 0 & L_{z} & -L_{y} \\
\cdot & \cdot & 0 & L_{x} \\
\cdot & \cdot & \cdot & 0
\end{array}\right)
$$

Simple orbit with L_{z} only: $p_{z}=0, z=0 \rightarrow L_{x}=L_{y}=0 \ldots$ and apply boost β in $-x$ direction

$$
\begin{aligned}
& \left(M^{\prime}\right)^{a b}=\Lambda^{a}{ }_{\mu} \Lambda^{b}{ }_{v} M^{\mu \nu}=\left(\begin{array}{cccc}
0 & t p_{x}-x E & \gamma\left(\left[t p_{y}-y E\right]-\beta L_{z}\right) & 0 \\
\cdot & 0 & \gamma\left(L_{z}-\beta\left[t p_{y}-y E\right]\right) & 0 \\
\cdot & \cdot & 0 & 0 \\
\cdot & \cdot & 0
\end{array}\right) \\
& \rightarrow L_{z}^{\prime}=\gamma L_{z}-\gamma \beta p_{y}(c t)+\gamma \beta y(E / c) \\
& \\
& =\gamma\left[L_{z}-\frac{\left(v_{\text {boost }} t\right)(m \omega R \cos \omega t)}{\vec{r}_{C M}(t) \times \vec{p}} \quad+m v R \sin \omega t\right] \\
& \text { time-averages to zero }
\end{aligned}
$$

Spin, L, and the free Dirac Hamiltonian

$$
\mathbf{H}=\boldsymbol{\alpha} \cdot \vec{p}+\boldsymbol{\beta} m=\left(\begin{array}{cc}
m \mathbf{1} & -i \overrightarrow{\boldsymbol{\sigma}} \cdot \vec{\nabla} \\
-i \overrightarrow{\boldsymbol{\sigma}} \cdot \vec{\nabla} & m \mathbf{1}
\end{array}\right)
$$

$$
\begin{aligned}
\overrightarrow{\mathbf{L}}(\vec{x}) & =1 \vec{x} \times \vec{p} \\
= & -1 i \vec{x} \times \vec{\nabla}
\end{aligned}
$$

$$
\vec{\Sigma}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right)
$$

$$
\left[\sigma_{i}, \sigma_{j}\right]=2 i \varepsilon_{i j k} \sigma_{k}
$$

Spin, L, and the free Dirac Hamiltonian

$$
\mathbf{H}=\boldsymbol{\alpha} \cdot \vec{p}+\boldsymbol{\beta} m=\left(\begin{array}{cc}
m \mathbf{1} & -i \overrightarrow{\boldsymbol{\sigma}} \cdot \vec{\nabla} \\
-i \vec{\sigma} \cdot \vec{\nabla} & m \mathbf{1}
\end{array}\right)
$$

$$
\begin{gathered}
\overrightarrow{\mathbf{L}}(\vec{x})=1 \vec{x} \times \vec{p} \\
=-1 i \vec{x} \times \vec{\nabla}
\end{gathered} \begin{gathered}
{\left[\mathbf{H}, \overrightarrow{\mathbf{L}}\left(x_{i}\right)\right]=-\vec{\alpha} \times \vec{\nabla}} \\
\mathbf{L} \text { Nost CONSERVED }
\end{gathered}
$$

$\vec{\Sigma}=\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right)$
$\left[\sigma_{i}, \sigma_{j}\right]=2 i \varepsilon_{i j k} \sigma_{k}$

Spin, L, and the free Dirac Hamiltonian

$$
\mathbf{H}=\boldsymbol{\alpha} \cdot \vec{p}+\boldsymbol{\beta} m=\left(\begin{array}{cc}
m \mathbf{1} & -i \overrightarrow{\boldsymbol{\sigma}} \cdot \vec{\nabla} \\
-i \vec{\sigma} \cdot \vec{\nabla} & m \mathbf{1}
\end{array}\right)
$$

$$
\begin{gathered}
\overrightarrow{\mathbf{L}}(\vec{x})=1 \vec{x} \times \vec{p} \\
=-1 i \vec{x} \times \vec{\nabla}
\end{gathered} \begin{gathered}
{\left[\mathbf{H}, \overrightarrow{\mathbf{L}}\left(x_{i}\right)\right]=-\vec{\alpha} \times \vec{\nabla}} \\
\mathbf{L} \text { Nost conserved }
\end{gathered}
$$

$\vec{\Sigma}=\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right) \longmapsto$ Pauli matrices in $\boldsymbol{\Sigma}$ and \mathbf{H} don't commute
$[\mathbf{H}, \overrightarrow{\boldsymbol{\Sigma}}]=2 \overrightarrow{\boldsymbol{\alpha}} \times \vec{\nabla}$
$\left[\sigma_{i}, \sigma_{j}\right]=2 i \varepsilon_{i j k} \sigma_{k}$

SPIN Not conserved

Spin, L, and the free Dirac Hamiltonian

$$
\mathbf{H}=\boldsymbol{\alpha} \cdot \vec{p}+\boldsymbol{\beta} m=\left(\begin{array}{cc}
m \mathbf{1} & -i \overrightarrow{\boldsymbol{\sigma}} \cdot \vec{\nabla} \\
-i \vec{\sigma} \cdot \vec{\nabla} & m \mathbf{1}
\end{array}\right)
$$

$$
\begin{array}{r}
\overrightarrow{\mathbf{L}}(\vec{x})=1 \vec{x} \times \vec{p} \\
=-1 i \vec{x} \times \vec{\nabla}
\end{array} \begin{array}{r}
{\left[\begin{array}{l}
\left.\mathbf{H}, \overrightarrow{\mathbf{L}}\left(x_{i}\right)\right]=-\vec{\alpha} \times \vec{\nabla} \\
\mathbf{L} \text { NOT CONSERVED }
\end{array}\right. \text { no shells! }}
\end{array}
$$

$$
\begin{gathered}
\vec{\Sigma}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right) \longrightarrow \text { Pauli matrices in } \boldsymbol{\Sigma} \text { and } \mathbf{H} \text { don't commute } \\
{[\mathbf{H}, \vec{\Sigma}]=2 \overrightarrow{\boldsymbol{\alpha}} \times \vec{\nabla}} \\
{\left[\sigma_{i}, \sigma_{j}\right]=2 i \varepsilon_{i j} \sigma_{k} \quad \text { SPIN NOT CONSERVED }}
\end{gathered}
$$

$$
\leadsto\left[\mathbf{H}, \overrightarrow{\mathbf{L}}+\frac{1}{2} \overrightarrow{\boldsymbol{\Sigma}}\right]=[\mathbf{H}, \overrightarrow{\mathbf{J}}]=0
$$

J conserved

Dirac particle in a central potential

We denote the solution of the above-mentioned equation by the Dirac four-spinor ψ and/or its upper- and lower-component, the corresponding two-spinors φ and χ. The stationary states are characterized by the following set of quantum numbers ε, j, m and P which are respectively the eigenvalues of the operators \hat{H} (the Hamiltonian), $\hat{\mathbf{j}}^{2}, \hat{j}_{z}$ (total angular momentum and its z-component) and \hat{P} (the parity). Since every eigenstate of the valence quark characterized by ε, j, m and P corresponds to two different orbital angular momenta l and $l^{\prime}=l \pm 1$, (see Appendix A), it is clear that orbital motion is involved in every stationary state. This is true also when the valence quark is in its ground state ($\psi_{\varepsilon j m P}$ where $\varepsilon=\varepsilon_{0}, j=1 / 2$, $m= \pm 1 / 2, P=+^{2}$). This state can be expressed as follows:
$\psi_{\varepsilon_{01} 1 / 2 m+}(r, \theta, \phi)=\binom{f_{0}(r) \Omega_{0}^{1 / 2 m}(\theta, \phi)}{g_{1}(r) \Omega_{1}^{1 / 2 m}(\theta, \phi)}$.
The angular part of the two-spinors can be written in terms of spherical functions $Y_{l l=}(\theta, \phi)$ and (nonrelativistic) spin-eigenfunctions which are nothing else but the Pauli-spinors $\xi(\pm 1 / 2)$:
$\Omega_{0}^{1 / 2 m}(\theta, \phi)=Y_{00}(\theta, \phi) \xi(m)$,

The spherical solutions of a Dirac particle in a central potential are discussed in some of the text books (see, for example, Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. Vol. 4: Relativistic quantum theory. New York: Pergamon 1971). The notations and conventions we use here are slightly different. In order to avoid possible misunderstanding, we list the general form of some of the key formulae in the following:

In terms of spherical variables, a state with given ε, j, m and P can be written as:

$$
\begin{align*}
& \psi_{\varepsilon j m P}(r, \theta, \phi) \tag{A1}\\
& \quad=\binom{f_{\varepsilon l}(r) \Omega_{l}^{j m}(\theta, \phi)}{(-1)^{\left(l-l^{\prime}+1\right) / 2} g_{\varepsilon l^{\prime}}(r) \Omega_{l^{\prime}}^{j m}(\theta, \phi)} .
\end{align*}
$$

Here $l=j \pm 1 / 2, l^{\prime}=2 j-l$ and $P=(-1)^{\prime} ; \Omega_{l}^{j m}$ and $\Omega_{l^{\prime}}^{j m}$ are twospinors which, for the possible values of l, are given by:
$\Omega_{i=j-1 / 2}^{j m}(\theta, \phi)$
$=\sqrt{\frac{j+m}{2 j}} Y_{l l_{2}=m-1 / 2}(\theta, \phi) \xi(1 / 2)$
$+\sqrt{\frac{j-m}{2 j}} Y_{l l_{s}=m+1 / 2}(\theta, \phi) \xi(-1 / 2)$,
$\Omega_{l=j+1 / 2}^{j m}(\theta, \phi)$

$$
=-\sqrt{\frac{j-m+1}{2 j+2}} Y_{l l_{z}=m-1 / 2}(\theta, \phi) \xi(1 / 2)
$$

$$
\begin{equation*}
+\sqrt{\frac{j+m+1}{2 j+2}} Y_{l l_{z}=m+1 / 2}(\theta, \phi) \xi(-1 / 2) . \tag{A3}
\end{equation*}
$$

Here, $\xi(\pm 1 / 2)$ stand for the eigenfunctions for the spin-operator $\hat{\sigma}_{z}$ with eigenvalues ± 1, and $Y_{l /=}(\theta, \phi)$ for the spherical harmonics which form a standard basis for the orbital angular momentum operators $\left(\hat{\mathbf{1}}^{2}, l_{z}\right)$. The function $f_{\varepsilon /}(r)$ and $g_{\varepsilon l^{\prime}}(r)$ are solutions of the coupled differential equations:

The Wacky World of Hyperon Polarization

Unpolarized beams on unpolarized targets produce hyperons which are strongly polarized!
\ldots direction is $\hat{n}=\mathbf{p}_{\text {beam }} \times \mathbf{p}_{Y}$
$d \sigma_{U U T} \sim \sin \left(\phi_{h}^{l}-\phi_{S_{h}}^{l}\right) \cdot f_{1}(x) D_{1 T}^{\perp(1)}(z)=\oplus$

Hyperon spin structure in CQM:

$$
\begin{aligned}
& \text { p } \quad \Delta u=+4 / 3, \Delta d=-1 / 3, \quad \Delta s=0 \\
& \Lambda \quad \Delta s=+1, \quad \Delta u=\Delta d=0 \\
& \Sigma^{ \pm} \quad \Delta s=-1 / 3, \Delta u, d=+4 / 3 \\
& \Xi^{ \pm} \quad \Delta s=+4 / 3, \Delta u, d=-1 / 3
\end{aligned}
$$

$\Rightarrow \boldsymbol{s i g n}$ of polarization is opposite to Δs...

Thomas Precession \& the DGM Model

Thomas precession: relativistic effect due [boost, rotation] $\neq 0$...
\rightarrow 'spin-orbit' pseudo-force that aligns L and \boldsymbol{S} of accelerating particle

$$
\Lambda: \Delta s=+1 \quad P_{\Lambda} \text { from accelerated sea } s \text { quark }
$$

$\underline{\Sigma^{+}: \Delta u=+4 / 3} P_{\Sigma}$ from accelerated valence $(u u)_{1}$ diquark

DGM model did
 pretty well

Thomas Precession \& the DGM Model

Thomas precession: relativistic effect due [boost, rotation] $\neq 0$...
\rightarrow 'spin-orbit' pseudo-force that aligns L and \boldsymbol{S} of accelerating particle
$\underline{\Lambda: \Delta s=+1} P_{\Lambda}$ from accelerated sea s quark

relevant?

$\underline{\Sigma^{+}: \Delta u=+4 / 3} P_{\Sigma}$ from accelerated valence $(u u)_{1}$ diquark

DGM model did pretty well

3 A Simple Derivation of the Thomas Precession

The follwoing derivation is based upon a suggestion by E.M. Purcell.
Imagine an aricraft flying in a large circular orbit. Approximate the orbit by a polygon of N sides, with N a very large number. As the aircraft traverses each of the N sides, it changes its angle of flight by the angle $\theta=2 \pi / N$ as shown in the figure.

After the aircraft has flown N segments, it is back at its starting point. IN the laboratory frame, the aircraft has rotated through an angle of 2π radians. However in the aircraft's instantaneous rest frame, the triangles shown have a Lorentz-contraction along the direction it is flying but not transversely. Thus at the end of each segment, in the aircraft frame, the aircraft turns by a larger angle than the laboratory $\theta=2 \pi / N$, but by an angle $\theta^{\prime}=\gamma \theta=W /(L / \gamma)=2 \pi \gamma / N$. After all N segements in the aircraft instanteous rest frame the total angle of rotation is $2 \pi \gamma$.

The difference in the reference frame is

$$
\Delta \theta=2 \pi(\gamma-1)
$$

Since N has dropped out of the formula for the angle and angle difference, one can let it go to infinity and the motion is circular and the formula is for the rate of precession.

$$
\frac{\omega_{P}}{\omega}=\frac{\Delta \theta / T}{2 \pi / T}=\gamma-1
$$

This equation, dispite the simplicity of the derivation, is the exact expression for the Thomas precession . The equation does not include the oscillationg term because the derivation neglected the fact that the front and rear qf.tbe.Rnertiakins, IWHSS'12, Lisboa, Apr 16-18, 2012 are not accelerated simultaneously.

3 A Simple Derivation of the Thomas Precession

The follwoing derivation is based upon a suggestio by E.M. Purcell.
Imagine an aricraft flying in a large circular orminne the orbit by a polygon of N sides, with N a very large number. As the aircraft traverses each of the N sides, it changes its angle of flight by the angle $\theta=2 \pi / N$ as shown in the figure.

After the aircraft has flown N segments, it is back at its starting point. IN the laboratory frame, the aircraft has rotated through an angle of 2π radians. However in the aircraft's instantaneous rest frame, the triangles shown have a Lorentz-contraction along the direction it is flying but not transversely. Thus at the end of each segment, in the aircraft frame, the aircraft turns by a larger angle than the laboratory $\theta=2 \pi / N$, but by an angle $\theta^{\prime}=\gamma \theta=W /(L / \gamma)=2 \pi \gamma / N$. After all N segements in the aircraft instanteous rest frame the total angle of rotation is $2 \pi \gamma$.

The difference in the reference frame is

$$
\Delta \theta=2 \pi(\gamma-1)
$$

Since N has dropped out of the formula for the angle and angle difference, one can let it go to infinity and the motion is circular and the formula is for the rate of precession.

$$
\frac{\omega_{P}}{\omega}=\frac{\Delta \theta / T}{2 \pi / T}=\gamma-1
$$

This equation, dispite the simplicity of the derivation, is the exact expression for the Thomas precession . The equation does not include the oscillationg term because the derivation neglected the fact that the front and rear qf.tbe.Rnertiakins, IWHSS'12, Lisboa, Apr 16-18, 2012 are not accelerated simultaneously.

TMDs and Single Spin Asymmetries

Single-spin asymmetries in $p^{\dagger} p \rightarrow \pi \mathbf{X}$

Analyzing Power

$$
A_{N}=\frac{1}{P_{\text {beam }}} \frac{N_{\text {left }}^{\pi}-N_{\text {right }}^{\pi}}{N_{\text {left }}^{\pi}+N_{\text {right }}^{\pi}}
$$

Huge single-spin asymmetry for forward meson production

Observable $\vec{S}_{\text {beam }} \cdot\left(\vec{p}_{\text {beam }} \times \vec{p}_{\pi}\right)$ odd under naive Time-Reversal

Single-spin asymmetries in $p^{\dagger} p \rightarrow \pi \mathbf{X}$

Analyzing Power

$$
A_{N}=\frac{1}{P_{\text {beam }}} \frac{N_{\text {left }}^{\pi}-N_{\text {right }}^{\pi}}{N_{\text {left }}^{\pi}+N_{\text {right }}^{\pi}}
$$

Huge single-spin asymmetry for forward meson production
NEW \ll Beam Single Spin Asymmetry

Observable $\vec{S}_{\text {beam }} \cdot\left(\vec{p}_{\text {beam }} \times \vec{p}_{\pi}\right)$ odd under naive Time-Reversal

Distribution Functions

PDFs surviving on integration over
 Transverse Momentum

Mulders \& Tangerman, NPB 461 (1996) 197
Distribution Functions

Fragmentation Functions

> PDFs surviving on integration over Transverse Momentum

The others are sensitive to intrinsic $\boldsymbol{k}_{\boldsymbol{T}}$ in the nucleon \& in the fragmentation process
\rightarrow TMD = transv-momentum dependent func
Mulders \& Tangerman, NPB 461 (1996) 197

Fragmentation Functions

> PDFs surviving on integration over Transverse Momentum

The others are sensitive to intrinsic $\boldsymbol{k}_{\boldsymbol{T}}$ in the nucleon \& in the fragmentation process
\rightarrow TMD = transv-momentum dependent func
Mulders \& Tangerman, NPB 461 (1996) 197

One T-odd function required to produce SSA $=$ single-spin asymmetries in hard-scattering \rightarrow related to parton L (OAM)
e.g

Polarizing FF
Collins FF

$\mathrm{H}_{\mathrm{IL}}^{\perp}=\oslash \rightarrow-\bigcirc$

PDFs surviving on integration over Transverse Momentum

The others are sensitive to intrinsic $\boldsymbol{k}_{\boldsymbol{T}}$ in the nucleon \& in the fragmentation process
\rightarrow TMD = transv-momentum dependent func
Mulders \& Tangerman, NPB 461 (1996) 197
Worm-Gear\#1

One T-odd function required to produce SSA $=$ single-spin asymmetries in hard-scattering \rightarrow related to parton L (OAM)
e.g.

Collins FF

Distribution Functions

Electro-Production of Hadrons with Tranvserse Target

Measure dependence of hadron production on two azimuthal angles

Electron beam defines
scattering plane

Electro-Production of Hadrons with Tranvserse Target

Measure dependence of hadron production on two azimuthal angles

Electron beam defines scattering plane

Target spin transverse to beam
with respect to scattering plane

Azimuthal angles measured around q vector ...
$\phi_{S}=$ target spin orientation

Electro-Production of Hadrons with Tranvserse Target

Measure dependence of hadron production on two azimuthal angles

Electron beam defines scattering plane

Target spin transverse to beam
with respect to scattering plane

Azimuthal angles measured around q vector ...
$\phi_{S}=$ target spin orientation

Electro-Production of Hadrons with Tranvserse Target

Measure dependence of hadron production on two azimuthal angles

Electron beam defines scattering plane

Target spin transverse to beam
with respect to scattering plane

Azimuthal angles measured around q vector ...
$\phi_{S}=$ target spin orientation
$\phi_{h}=$ hadron direction
$\otimes f_{1}=\bullet \quad \otimes D_{1}=\bullet$
$\otimes h_{1}^{\perp}=(\quad-$
$\otimes H_{1}^{\perp}=\bullet-$
UL $\quad \sin \left(2 \phi_{h}^{l}\right)$
$\otimes h_{1 L}^{\perp}=\bullet \rightarrow$
$\otimes H_{1}^{\perp}=$

UT $\quad \sin \left(\phi_{h}^{l}+\phi_{S}^{l}\right)$
$\otimes h_{1}=\stackrel{\Delta}{\bullet}-\stackrel{\uparrow}{i}$
$\otimes H_{1}^{\perp}=$
$\sin \left(\phi_{h}^{l}-\phi_{S}^{l}\right)$
$\otimes f_{1 T}^{\perp}=\stackrel{\perp}{\bullet}-\bullet$
$\otimes D_{1}=\bullet$
$\sin \left(3 \phi_{h}^{l}-\phi_{S}^{l}\right)$
$\otimes h_{1 T}^{\perp}=\stackrel{4}{\bullet}$
$\otimes H_{1}^{\perp}=$
LL 1
$\otimes g_{1}=\mapsto \rightarrow-\rightarrow$
$\otimes D_{1}=\bullet$

LT $\quad \cos \left(\phi_{h}^{l}-\phi_{S}^{l}\right)$
$\otimes g_{1 T}=\stackrel{\perp}{\bullet}-\stackrel{\perp}{\bullet}$
$\otimes D_{1}=\bullet$
$\otimes f_{1}=\bullet \quad \otimes D_{1}=\bullet$
$\otimes h_{1}^{\perp}=-\quad$ -
$\otimes H_{1}^{\perp}=\bullet-$
UL $\quad \sin \left(2 \phi_{h}^{l}\right)$
$\otimes h_{1 L}^{\perp}=\bullet \rightarrow$
$\otimes H_{1}^{\perp}=$

UT $\quad \sin \left(\phi_{h}^{l}+\phi_{S}^{l}\right)$
$\otimes h_{1}=\stackrel{\uparrow}{\bullet}-\stackrel{\uparrow}{i}$
$\otimes H_{1}^{\perp}=\bullet-!$
$\sin \left(\phi_{h}^{l}-\phi_{S}^{l}\right)$
$\otimes f_{1 T}^{\perp}=\stackrel{\perp}{\bullet}-\bullet$
$\otimes D_{1}=\bullet$
$\sin \left(3 \phi_{h}^{l}-\phi_{S}^{l}\right)$
$\otimes h_{1 T}^{\perp}=\stackrel{4}{\bullet}$
$\otimes H_{1}^{\perp}=\bullet-$
LL 1
$\otimes g_{1}=\Theta-\bigoplus$
$\otimes D_{1}=\bullet$

LT $\quad \cos \left(\phi_{h}^{l}-\phi_{S}^{l}\right)$
$\otimes g_{1 T}=\stackrel{\perp}{\bullet}-\stackrel{\perp}{\bullet}$
$\otimes D_{1}=\bullet$

The Sivers Function

$$
f_{1 T}^{\perp}\left(x, k_{T}\right)
$$

$$
\odot \odot
$$

Sivers Moments for π and K from H^{\dagger} \& D
HERMES final H^{\dagger}. PRL 103 (2009)

Sivers Moments for π and K from $H^{\uparrow} \& D$
HERMES final \mathbf{H}^{\dagger}. PRL 103 (2009)

-0.1 Combining the two targets: Sivers of opposite sign for u and d (GeV/c) $10 \times 2 \quad$ x $\quad P_{h \perp}[G e V]$
N.C.R. Makins, IWHSS’12, Lisboa, Apr 16-18, 2012

COMPASS proton data: confirmation!

W-dependence of Sivers

looking for higher twist, factorization breaking

COMPASS 2010 proton data

W-dependence of Sivers

looking for higher twist, factorization breaking

next, push the test to ...
low y: $0.05<\mathrm{y}<0.1$

$0.05<y<0.1$

y-dependence of Sivers

it's baaaack ... O at very low y (and so low W < $5 \mathbf{G e V}$)

hermes Note: HERMES range is $3.2<\mathrm{W}<7 \mathrm{GeV}$

but TMD Evolution looking good!

○ HERMES H ${ }^{\dagger} \rightarrow \pi^{ \pm} \quad \bullet$ COMPASS $2010 \mathbf{H}^{\dagger} \rightarrow \mathbf{h}^{ \pm}$

Phenomenology: Sivers Mechanism

M. Burkardt: Chromodynamic lensing

Electromagnetic coupling $\sim\left(J_{0}+J_{3}\right)$ stronger for oncoming quarks
u mostly over here

Phenomenology: Sivers Mechanism

Assuming $\mathrm{L}_{u}>0 \ldots$

M. Burkardt: Chromodynamic lensing

Electromagnetic coupling $\sim\left(J_{0}+J_{3}\right)$ stronger for oncoming quarks
u mostly over here

FSI kick

We observe $\left\langle\sin \left(\phi_{h}^{l}-\phi_{S}^{l}\right)\right\rangle_{\mathrm{UT}}^{\pi^{+}}>0$ (and opposite for π^{-})
\therefore for $\phi_{S}^{l}=0, \phi_{h}^{l}=\pi / 2$ preferred
Model agrees!

Phenomenology: Sivers Mechanism

Assuming $L_{u}>0 \ldots$

M. Burkardt: Chromodynamic lensing

Electromagnetic coupling $\sim\left(J_{0}+J_{3}\right)$ stronger for oncoming quarks

New Global Fit to Sivers SIDIS Data

 PRL 107 (2011)
Using available data
 Sivers

 quark OAM
$f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right), \quad$ (more later)

Use SIDIS Sivers asymmetry nemes

Jefferson Lab

$$
\begin{aligned}
& \kappa^{p}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{u_{v}}(x, 0,0)-E^{d_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
& \kappa^{n}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{d_{v}}(x, 0,0)-E^{u_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
& \text { Use anomalous magnetic } \\
& \text { moments to constrain integral }
\end{aligned}
$$

Alessandro Bacchetta, INT Workshop on OAM

$$
\begin{gathered}
h_{1}^{1}\left(x, k_{T}\right) \\
(\boldsymbol{O}-\boldsymbol{O}
\end{gathered}
$$

$$
\begin{gathered}
h_{1}^{1}\left(x, k_{T}\right) \\
\text { (- }-\boldsymbol{?}
\end{gathered}
$$

The Boer-Mulders function

produces an azimuthal modulation with unpolarized beam and target

$$
h_{1}^{\perp}\left(x, k_{T}\right)
$$

Electron beam defines scattering plane

$$
\phi_{h}=\text { hadron direction }
$$

Boer-Mulders \#1: <cos(2Ф)> ${ }_{\text {uu }}$ from HERMES

$$
h_{1}^{\perp}\left(x, k_{T}\right) \otimes H_{1}^{\perp}\left(z, p_{T}\right) \rightarrow \cos (2 \phi) \text { modulation }
$$

Deuterium \approx Hydrogen values \rightarrow indicate Boer-Mulders functions of SAME SIGN for up and down quarks (both negative, similar magnitudes)

Boer-Mulders \#1: <cos(2Ф)> ${ }_{\text {uu }}$ from HERMES

$$
h_{1}^{\perp}\left(x, k_{T}\right) \otimes H_{1}^{\perp}\left(z, p_{T}\right) \rightarrow \cos (2 \phi) \text { modulation }
$$

Deuterium \approx Hydrogen values \rightarrow indicate Boer-Mulders functions of SAME SIGN for up and down quarks (both negative, similar magnitudes)

Boer-Mulders \#2: $<\boldsymbol{c o s}(2 \Phi)>_{\text {UU }}$ from COMPASS

COMPASS $\cos (2 \Phi)$ well explained by dominant twist-4 Cahn effect
V.Barone, A.Prokudin, B.Q.Ma arXiv:0804.3024 [hep-ph]

Boer Mulders
------. CahnpQCD
errors shown are statistical only
Wolfgang Käfer, Traversity08 @ Ferrara

Boer-Mulders \#2: <cos(2Ф)> $>_{\text {UU }}$ from COMPASS

COMPASS $\cos (2 \Phi)$
 well explained by
 dominant
 twist-4 Cahn effect

... but Cahn contribn seems small in HERMES data, at lower Q^{2}
V.Barone, A.Prokudin, B.Q.Ma arXiv:0804.3024 [hep-ph]
__ total
"..............."." Boer Mulders
------. Cahn $\cdots-\cdots$.... pQCD
errors shown are statistical only
Wolfgang Käfer, Traversity08 @ Ferrara

Pretzelosity \& the Worm Gears

$h_{1 T}^{\perp}\left(x, k_{T}\right)$

$h_{1 L}^{\perp}\left(x, k_{T}\right)$
$g_{1 T}\left(x, k_{T}\right)$
$\bullet-$

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- chiral-odd \rightarrow needs Collins FF (or similar)
- leads to $\sin \left(3 \phi-\phi_{s}\right)$ modulation in Aut
- proton and deuteron data consistent with zero
- cancelations? pretzelosity=zero? or just the additional suppression by two

Pretzelosity

 $\mathbf{g}_{1}{ }^{q}-\mathbf{h}_{1}{ }^{q} \rightarrow$ relativistic effectsIn several models, related to powers of P_{h}

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

Worm-Gear I

- again chiral-odd
- evidence from CLAS (violating isospin symmetry?)
- consistent with zero at COMPASS and HERMES

- new data from CLAS

Gunar Schnell

	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$

- chiral even
- first direct evidence for worm-gear git on
- ${ }^{3} \mathrm{He}$ target at JLab
- H target at HERMES

$$
\begin{aligned}
& \text { L, Sivers, the Sea, and } \\
& \text { the Missing Spin Programme }
\end{aligned}
$$

T-odd TMDs \rightarrow gauge links and L

A T-odd function like $f_{1 T}^{\perp}$ must arise from interference ... but a distribution function is just a forward scattering amplitude, how can it contain an interference?

Brodsky, Hwang, \& Schmidt 2002

and produce
a T-odd effect! (also need $L_{z} \neq 0$)

It looks like higher-twist ... but no, these are soft gluons: "gauge links" required for color gauge invariance

T-odd TMDs \rightarrow gauge links and L

A T-odd function like $f_{1 T}^{\perp}$ must arise from interference ... but a distribution function is just a forward scattering amplitude, how can it contain an interference?

Brodsky, Hwang, \& Schmidt 2002

can interfere with

and produce
a T-odd effect! (also need $L_{z} \neq 0$)

It looks like higher-twist ... but no, these are soft gluons: "gauge links" required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are final / initial state interactions ... and process-dependent ...
e.g. Drell-Yan: \rightarrow Sivers effect should have opposite sign cf. SIDIS

T-odd TMDs \rightarrow gauge links and L

A T-odd function like $f_{1 T}^{\perp}$ must arise from interference ... but a distribution function is just a forward scattering amplitude, how can it contain an interference?

Brodsky, Hwang, \& Schmidt 2002

can interfere with
 and produce a T-odd effect! (also need $L_{z} \neq 0$)

It looks like higher-twist ... but no, these are soft gluons: "gauge links" required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are final / initial state interactions ... and process-dependent ...
e.g. Drell-Yan: \rightarrow Sivers effect should have opposite sign cf. SIDIS

A Tantalizing Picture

- Transversity: $h_{1, u}>0 \quad h_{1, d}<0$
\rightarrow same as $g_{1, u}$ and $g_{1, d}$ in NR limit
- Sivers: $\quad f_{1 \mathrm{~T}^{\perp}, u}<0 \quad f_{1 \mathrm{~T}^{\perp}, d}>0$
\rightarrow relat ${ }^{\mathrm{n}}$ to anomalous magnetic moment*
$\boldsymbol{f}_{\mathbf{1 T}^{\perp}, q} \sim \boldsymbol{\kappa}_{q}$ where $\kappa_{u} \approx+1.67 \quad \kappa_{d} \approx-2.03$
values achieve $\kappa^{p, n}=\Sigma_{q} e_{q} \kappa_{q}$ with u, d only

- Boer-Mulders: follows that $h_{1^{\perp}, u}$ and $h_{1^{\perp}, d}<0$?
\rightarrow results on $<\cos (2 \Phi)>_{\mathrm{Uu}}$ suggest yes:

* Burkardt PRD72 (2005) 094020; Barone et al PRD78 (1008) 045022;

A Tantalizing Picture

- Transversity: $h_{1, u}>0 \quad h_{1, d}<0$
\rightarrow same as $g_{1, u}$ and $g_{1, d}$ in NR limit
- Sivers: $\quad f_{1 \mathrm{~T}^{\perp}, u}<0 \quad f_{1 \mathrm{~T}^{\perp}, d}>0$
\rightarrow relat $^{\mathrm{n}}$ to anomalous magnetic moment*
$\boldsymbol{f}_{\mathbf{1 T}^{\perp}, q} \sim \boldsymbol{\kappa}_{q}$ where $\kappa_{u} \approx+1.67 \quad \kappa_{d} \approx-2.03$
values achieve $\kappa^{p, n}=\Sigma_{q} e_{q} \kappa_{q}$ with u, d only

- Boer-Mulders: follows that $h_{1^{\perp}, u}$ and $h_{1^{\perp}, d}<0$? \rightarrow results on $<\cos (2 \Phi)>_{\mathrm{Uu}}$ suggest yes:
N.B. these TMDs are all independent

* Burkardt PRD72 (2005) 094020; Barone et al PRD78 (1008) 045022;

$$
\left\langle\vec{s}_{u} \cdot \vec{S}_{p}\right\rangle=+0.5 \quad\left\langle\vec{l}_{u} \cdot \vec{S}_{p}\right\rangle=+0.5 \quad\left\langle\vec{s}_{u} \cdot \vec{l}_{u}\right\rangle=0
$$

is it a HAPPY

A Tantalizing Picture

 picture?- Transversity: $h_{1, u}>0 \quad h_{1, d}<0$
\rightarrow same as $g_{1, u}$ and $g_{1, d}$ in NR limit
- Sivers: $\quad f_{1 \mathrm{~T}^{\perp}, u}<0 \quad f_{1 \mathrm{~T}^{\perp}, d}>0$
\rightarrow relat ${ }^{\mathrm{n}}$ to anomalous magnetic moment*
$\boldsymbol{f}_{\mathbf{1 T}^{\perp}, q} \sim \boldsymbol{\kappa}_{q}$ where $\kappa_{u} \approx+1.67 \quad \kappa_{d} \approx-2.03$
values achieve $\kappa^{p, n}=\Sigma_{q} e_{q} \kappa_{q}$ with u, d only

(u)

- Boer-Mulders: follows that $h_{1^{\perp}, u}$ and $h_{1^{\perp}, d}<0$?
\rightarrow results on $<\cos (2 \Phi)>_{\mathrm{Uu}}$ suggest yes:

N.B. these TMDs are all independent

* Burkardt PRD72 (2005) 094020; Barone et al PRD78 (1008) 045022;

$$
\left\langle\vec{s}_{u} \cdot \vec{S}_{p}\right\rangle=+0.5 \quad\left\langle\vec{l}_{u} \cdot \vec{S}_{p}\right\rangle=+0.5 \quad\left\langle\vec{s}_{u} \cdot \vec{l}_{u}\right\rangle=0
$$

Meson Cloud on an Envelope \rightarrow It ORBITS

$$
\begin{array}{rlrl}
\mid \mathrm{p}>= & \mathrm{p} & +\mathrm{N} \pi & \text { Pions have } \mathrm{JP}=0^{-}=\text {negative parity } \ldots \\
& +\Delta \pi+\ldots & \rightarrow N E E D \underline{L}=1 \text { to get proton's } \mathrm{JP}=1 / 2^{+}
\end{array}
$$

$\mathbf{N} \boldsymbol{\pi}$ cloud:
$2 / 3 \quad \mathrm{n} \pi^{+} \quad \bigotimes$
$1 / 3$ p π^{0}

Meson Cloud on an Envelope \rightarrow It ORBITS

$$
\begin{array}{rlrl}
\mid \mathrm{p}>= & \mathrm{p} & +\mathrm{N} \pi & \text { Pions have } \mathrm{JP}=0^{-}=\text {negative parity } \ldots \\
& +\Delta \pi+\ldots & \rightarrow N E E D \underline{L}=1 \text { to get proton's } \mathrm{JP}^{\mathrm{L}}=1 / 2^{+}
\end{array}
$$

$\mathbf{N} \boldsymbol{\pi}$ cloud:
$2 / 3 \quad \mathrm{n} \pi^{+} \quad \otimes$
$1 / 3$ p π^{0}
$\Delta \pi$ cloud:
$1 / 2 \Delta^{++} \pi^{-}$
$1 / 3 \quad \Delta^{+} \pi^{0}$
$1 / 6 \quad \Delta^{0} \pi^{+}$

$$
\begin{array}{ll}
1 / 2 & \mathrm{~L}_{\mathrm{Z}}=-1 \\
1 / 3 & \mathrm{~L}_{\mathrm{z}}=0 \\
1 / 6 & \mathrm{~L}_{\mathrm{z}}=+1
\end{array}
$$

Meson Cloud on an Envelope \rightarrow It ORBITS

$$
\begin{array}{rlrl}
\mid \mathrm{p}>= & \mathrm{p} & +\mathrm{N} \pi & \text { Pions have } \mathrm{JP}^{\mathrm{P}}=0^{-}=\text {negative parity } \ldots \\
& +\Delta \pi+\ldots & \rightarrow N E E D \underline{L}=1 \text { to get proton's } \mathrm{JP}^{\mathrm{L}}=11^{+}
\end{array}
$$

$\mathbf{N} \boldsymbol{\pi}$ cloud:
$\begin{array}{lll}2 / 3 & \mathrm{n} \pi^{+} \quad \bigotimes \\ 1 / 3 & \mathrm{p} \pi^{0} & \boxed{ } 10\end{array}$

$2 / 3 \quad L_{z}=+1$
$1 / 3 \quad L_{z}=0$
$\Delta \pi$ cloud:
$1 / 2 \Delta^{++} \pi^{-}$
$1 / 3 \quad \Delta^{+} \pi^{0}$
$1 / 6 \quad \Delta^{0} \pi^{+}$

$1 / 2 \quad L_{z}=-1$
$1 / 3 \quad L_{z}=0$
$1 / 6 \quad L_{z}=+1$

Dominant orbiting U: $\mathbf{n} \boldsymbol{\pi}^{+}$with $\mathrm{L}_{\mathbf{z}}(\boldsymbol{\pi})>0$ source of:

Meson Cloud on an Envelope \rightarrow It ORBITS

$$
\begin{array}{rlrl}
\mid \mathrm{p}>= & \mathrm{p} & +\mathrm{N} \pi & \text { Pions have } \mathrm{JP}^{\mathrm{P}}=0^{-}=\text {negative parity } \ldots \\
& +\Delta \pi+\ldots & \rightarrow N E E D \underline{L}=1 \text { to get proton's } \mathrm{JP}^{\mathrm{L}}=11^{+}
\end{array}
$$

$\mathbf{N} \boldsymbol{\pi}$ cloud:

$$
\begin{array}{ll}
2 / 3 & \mathrm{~L}_{\mathrm{z}}=+1 \\
1 / 3 & \mathrm{~L}_{\mathrm{z}}=0
\end{array}
$$

$\Delta \pi$ cloud:

$$
\begin{array}{ll}
1 / 2 & \Delta^{++} \pi^{-} \\
1 / 3 & \Delta^{+} \\
\pi^{0} \\
1 / 6 & \Delta^{0} \\
\pi^{+}
\end{array}
$$

$1 / 2 \quad L_{z}=-1$
$1 / 3 \quad \mathrm{~L}_{\mathrm{z}}=0$
$1 / 6 \quad L_{z}=+1$

Dominant orbiting U: $\mathrm{n} \boldsymbol{\pi}^{+}$with $\mathrm{L}_{\mathbf{z}}(\boldsymbol{\pi})>0$ source of: orbiting d: $\Delta^{++} \pi^{-}$with $L_{z}(\pi)<0$

Meson Cloud on an Envelope \rightarrow It ORBITS

$$
\begin{array}{rlrl}
\mid \mathrm{p}>= & \mathrm{p} & +\mathrm{N} \pi & \text { Pions have } \mathrm{JP}^{\mathrm{P}}=0^{-}=\text {negative parity } \ldots \\
& +\Delta \pi+\ldots & \rightarrow N E E D \underline{L}=1 \text { to get proton's } \mathrm{JP}^{\mathrm{L}}=11^{+}
\end{array}
$$

$\mathbf{N} \boldsymbol{\pi}$ cloud:

$$
2 / 3 \quad L_{z}=+1
$$

$$
1 / 3 \quad L_{z}=0
$$

$\Delta \pi$ cloud:

$$
\begin{array}{ll}
1 / 2 & \Delta^{++} \pi^{-} \\
1 / 3 & \Delta^{+} \\
\pi^{0} \\
1 / 6 & \Delta^{0} \\
\pi^{+}
\end{array}
$$

$$
\begin{array}{ll}
1 / 2 & L_{\mathrm{z}}=-1 \\
1 / 3 & \mathrm{~L}_{\mathrm{z}}=0 \\
1 / 6 & \mathrm{~L}_{\mathrm{z}}=+1
\end{array}
$$

$$
L_{u}>0
$$

$$
L_{d}<0
$$

$$
L_{q b a r} \neq 0
$$

Dominant source of:
orbiting U : $n \pi^{+}$with $L_{z}(\pi)>0$ orbiting d: $\Delta^{++} \pi^{-}$with $L_{z}(\pi)<0$

Transverse spin on the lattice

Compute quark densities in impact-parameter space via GPD formalism nucleon coming out of page ... observe spin-dependent shifts in quark densities:

N.C.R. Makins, IWHSS'12, Lisboa, Apr 16-18, 2012

Transverse spin on the lattice

Compute quark densities in impact-parameter space via GPD formalism nucleon coming out of page ... observe spin-dependent shifts in quark densities:

N.C.R. Makins, IWHSS'12, Lisboa, Apr 16-18, 2012

Transverse spin on the lattice

Compute quark densities in impact-parameter space via GPD formalism nucleon coming out of page ... observe spin-dependent shifts in quark densities:

Thomas: cloudy bag model evolved up to Q^{2} of expt / lattice

... and Longitudinal spin on the lattice ...

Thomas: cloudy bag model evolved up to Q^{2} of expt / lattice
 scale
\rightarrow lattice shows $L_{u}<0$ and $L_{d}>0$ in longitudinal case at expt'al scales!
Evolution might explain disagreement with quark models ...

Thomas: cloudy bag model evolved up to Q^{2} of expt / lattice

\rightarrow lattice shows $L_{u}<0$ and $L_{d}>0$ in longitudinal case at expt'al scales!
Evolution might explain disagreement with quark models ...
or not. Wakamatsu evolves down \rightarrow insensitive to uncertain scale of quark models

- Density shifts + lensing function = Sivers (model-dependent)

The Mysterious E

- Density shifts + lensing function = Sivers (model-dependent)
- Density shifts seen on lattice due to $\operatorname{GPD} \mathbf{E}_{\mathbf{q}}(x, \xi, t) \quad$ The Mysterious \mathbf{E}
- Density shifts + lensing function = Sivers (model-dependent)
- Density shifts seen on lattice due to $\operatorname{GPD} \mathbf{E}_{\mathbf{q}}(x, \xi, t) \quad$ The Mysterious \mathbf{E}
- E requires L

Brodksy, Drell (1980) ; Burkardt, Schnell, PRD 74 (2006)

- $\int E \mathrm{dx}=$ Pauli $\mathbf{F}_{2} \rightarrow(\mathrm{t}=0)$ anomalous mag moment $\mathbf{k} \quad \because$ GPD basics
- both F_{2} and \mathbf{k} require $L \neq 0$
$\because \mathrm{N}$ spin-flip amplitudes
- Density shifts + lensing function = Sivers (model-dependent)
- Density shifts seen on lattice due to $\operatorname{GPD} \mathbf{E}_{\mathbf{q}}(x, \xi, t) \quad$ The Mysterious \mathbf{E}
- E requires L

Brodksy, Drell (1980) ; Burkardt, Schnell, PRD 74 (2006)

- $\int E \mathrm{dx}=$ Pauli $\mathbf{F}_{2} \rightarrow(\mathrm{t}=0)$ anomalous mag moment $\mathbf{k} \quad \because$ GPD basics
- both F_{2} and \mathbf{k} require $\mathrm{L}_{\boldsymbol{\prime}} \neq \mathbf{0} \quad \because \mathrm{N}$ spin-flip amplitudes
- E is not L

Ji Sum
Rule

$$
2 J_{q}=\left.\int x H_{q}\right|_{t=0} d x+\left.\int x E_{q}\right|_{t=0} d x
$$

- Density shifts + lensing function = Sivers (model-dependent)
- Density shifts seen on lattice due to $\operatorname{GPD} \mathbf{E}_{\mathbf{q}}(x, \xi, t)$

The Mysterious E

- E requires L

```
Brodksy, Drell (1980) ; Burkardt, Schnell, PRD 74 (2006)
```

- $\int \mathbf{E d x}=$ Pauli $\mathbf{F}_{2} \rightarrow_{(t=0)}$ anomalous mag moment $\mathbf{k} \quad \because$ GPD basics
- both F_{2} and \mathbf{k} require $\mathrm{L}_{\mathrm{F}} \boldsymbol{0} \quad \because \mathrm{N}$ spin-flip amplitudes
- E is not L

Ji Sum
Rule
$\underset{\text { fraction }}{\text { momentum }} \int x q(x) d x \longleftarrow\langle\mathbf{x}\rangle_{\mathbf{q}}$

- Density shifts + lensing function = Sivers (model-dependent)
- Density shifts seen on lattice due to GPD $\mathbf{E}_{\mathbf{q}}(x, \xi, t)$

The Mysterious E

- E requires L
- $\int E \mathrm{dx}=$ Pauli $\mathbf{F}_{2} \rightarrow(\mathrm{t}=0)$ anomalous mag moment $\mathbf{k} \quad \because$ GPD basics
- both F_{2} and \mathbf{k} require $L \neq 0$
$\because \mathrm{N}$ spin-flip amplitudes
- E is not L

Ji Sum
Rule
momentum fraction $\int x q(x) d x \leftarrow\langle\mathbf{X}\rangle_{\mathbf{q}}+\quad \mathbf{E}_{\mathbf{q}} \rightarrow \begin{gathered}\text { "anomalous gravito- } \\ \text { magnetic moment" }\end{gathered}$

- Density shifts + lensing function = Sivers (model-dependent)
- Density shifts seen on lattice due to $\operatorname{GPD} \mathbf{E}_{\mathbf{q}}(x, \xi, t)$

The Mysterious E

- E requires L

Brodksy, Drell (1980) ; Burkardt, Schnell, PRD 74 (2006)

- $\int E \mathrm{dx}=$ Pauli $\mathbf{F}_{2} \rightarrow(\mathrm{t}=0)$ anomalous mag moment $\mathbf{k} \quad \because$ GPD basics
- both F_{2} and \mathbf{k} require $L \neq 0$
$\because \mathrm{N}$ spin-flip amplitudes
- E is not L

Ji Sum
Rule
$\underset{\text { fraction }}{\text { momentum }} \int x q(x) d x \longleftarrow\langle\mathbf{X}\rangle_{\mathbf{q}}+\quad \mathbf{E}_{\mathbf{q}}^{(\mathbf{2})} \longrightarrow$ "anomalous gravitomagnetic moment"

Spin Sum $2 J_{q}=\Delta q+2 L_{q}$
Rule

$$
\therefore 2 L_{q}=\left[\langle x\rangle_{q}+E_{q}^{(2)}\right]_{=J_{q}}-\Delta q
$$

Contradiction?

- Density shifts + lensing function = Sivers (model-dependent)
- Density shifts seen on lattice due to $\operatorname{GPD} \mathbf{E}_{\mathbf{q}}(x, \xi, t)$

The Mysterious E

- E requires L Brodksy, Drell (1980) ; Burkardt, Schnell, PRD 74 (2006)
- $\int E \mathrm{dx}=$ Pauli $\mathbf{F}_{2} \rightarrow_{(t=0)}$ anomalous mag moment $\mathbf{k} \quad \because$ GPD basics
- both F_{2} and \mathbf{k} require $L \neq 0$
$\because \mathrm{N}$ spin-flip amplitudes
- E is not L

Jaffe L?

Ji Sum
Rule
$\underset{\text { momentum }}{\text { maction }} \int x q(x) d x \longleftarrow\langle\mathbf{x}\rangle_{\mathbf{q}}+\mathbf{E}_{\mathbf{q}}^{(\mathbf{2})} \longrightarrow$ "anomalous gravitomagnetic moment"

Spin Sum $2 J_{q}=\Delta q+2 L_{q}$
Rule
Ji L

$$
\therefore 2 L_{q}=\left[\langle x\rangle_{q}+E_{q}^{(2)}\right]_{=J_{q}}-\Delta q
$$

"L" not uniquely defined

Proton Spin Decompositions

$$
\boldsymbol{J}^{\mathrm{Ji}}=\frac{i}{2} q^{\dagger}(\vec{r} \times \vec{D})^{z} q+\frac{1}{2} q^{\dagger} \sigma^{z} q+2 \operatorname{Tr} E^{j}(\vec{r} \times \vec{D})^{z} A^{j}+\operatorname{Tr}(\vec{E} \times \vec{A})^{z}
$$

$$
J^{\mathrm{Jaffe}}=\frac{1}{2} q_{+}^{\dagger}(\vec{r} \times i \vec{\nabla})^{z} q_{+}+\frac{1}{2} q_{+}^{\dagger} \gamma_{5} q_{+}+2 \operatorname{Tr} F^{+j}(\vec{r} \times i \vec{\nabla})^{z} A^{j}+\varepsilon^{+-i j} \operatorname{Tr} \overrightarrow{F^{+i}} \vec{A}^{j}
$$

Proton Spin Decompositions

$$
\boldsymbol{J}^{\mathrm{Ji}}=\frac{i}{2} q^{\dagger}(\vec{r} \times \vec{D})^{z} q+\frac{1}{2} q^{\dagger} \sigma^{z} q+2 \operatorname{Tr} E^{j}(\vec{r} \times \vec{D})^{z} A^{j}+\operatorname{Tr}(\vec{E} \times \vec{A})^{z}
$$

$J^{\text {Jaffe }}=\frac{1}{2} q_{+}^{\dagger}(\vec{r} \times i \vec{\nabla})^{z} q_{+}+\frac{1}{2} q_{+}^{\dagger} \gamma_{5} q_{+}+2 \operatorname{Tr} F^{+j}(\vec{r} \times i \vec{\nabla})^{z} A^{j}+\varepsilon^{+-i j} \operatorname{Tr} \overrightarrow{F^{+i}} \vec{A}^{j}$
Ji: 3 gauge invariant $\Delta \boldsymbol{q}, L_{q}, \boldsymbol{J}_{g}$
X access Δg : no Gl sep ${ }^{n}$ of $\Delta g, L g$
\checkmark measure $\boldsymbol{L}_{\boldsymbol{q}}$ (expt \& lattice): yes \rightarrow via GPDs \& DVCS

X interpret L_{q} : $\underline{\text { covariant derivative }}$
$D^{\mu}=\partial^{\mu}+i g^{\mu} \leftarrow$ gluon interac's

$$
\begin{gathered}
\boldsymbol{J}^{\mathrm{Ji}}=\frac{i}{2} q^{\dagger}(\vec{r} \times \vec{D})^{z} q+\frac{1}{2} q^{\dagger} \sigma^{z} q+2 \operatorname{Tr} E^{j}(\vec{r} \times \vec{D})^{z} A^{j}+\operatorname{Tr}(\vec{E} \times \vec{A})^{z} \\
\boldsymbol{L}_{q} \\
\Delta q \\
\boldsymbol{L}_{g}
\end{gathered}
$$

$J^{\text {Jaffe }}=\frac{1}{2} q_{+}^{\dagger}(\vec{r} \times i \vec{\nabla})^{z} q_{+}+\frac{1}{2} q_{+}^{\dagger} \gamma_{5} q_{+}+2 \operatorname{Tr} F^{+j}(\vec{r} \times i \vec{\nabla})^{z} A^{j}+\varepsilon^{+-i j} \operatorname{Tr} \overrightarrow{F^{+} i} \vec{A}^{j}$

Ji: 3 gauge invariant $\Delta q, L_{q}, \boldsymbol{J}_{\boldsymbol{g}}$
\times access Δg : no Gl sepn of $\Delta g, L_{g}$
\checkmark measure L_{q} (expt \& lattice): yes \rightarrow via GPDs \& DVCS
X interpret L_{q} : covariant derivative $D^{\mu}=\partial^{\mu}+i g^{\mu} \leftarrow$ gluon interac's

Jaffe: 4 gauge invar $\Delta q, L_{q}, \Delta g, L_{g}$
\checkmark access Δg : this is what's being measured at RHIC, COMPASS
\checkmark interpret $\boldsymbol{L}_{q}: \vec{r} \times \vec{p} \rightarrow$ field-free OAM ... in ∞ momentum frame
x measure L_{q} (expt \& lattice): involves non-local operators except in lightcone gauge $A^{+}=0$

$$
\begin{gathered}
\boldsymbol{J}^{\mathrm{Ji}}=\frac{i}{2} q^{\dagger}(\vec{r} \times \vec{D})^{z} q+\frac{1}{2} q^{\dagger} \sigma^{z} q+2 \operatorname{Tr} E^{j}(\vec{r} \times \vec{D})^{z} A^{j}+\operatorname{Tr}(\vec{E} \times \vec{A})^{z} \\
\boldsymbol{L}_{q}
\end{gathered} \boldsymbol{\Delta q} \boldsymbol{\Delta g} \boldsymbol{\Delta g}
$$

$$
J^{\mathrm{Jaffe}}=\frac{1}{2} q_{+}^{\dagger}(\vec{r} \times i \vec{\nabla})^{z} q_{+}+\frac{1}{2} q_{+}^{\dagger} \gamma_{5} q_{+}+2 \operatorname{Tr} F^{+j}(\vec{r} \times i \vec{\nabla})^{z} A^{j}+\varepsilon^{+-i j} \operatorname{Tr} \overrightarrow{F^{+i}} \vec{A}^{j}
$$

Ji: 3 gauge invariant $\Delta q, L_{q}, \boldsymbol{J}_{\boldsymbol{g}}$
\times access Δg : no Gl sep ${ }^{n}$ of $\Delta g, L_{g}$
\checkmark measure L_{q} (expt \& lattice): yes \rightarrow via GPDs \& DVCS
X interpret L_{q} : covariant derivative $D^{\mu}=\partial^{\mu}+i g^{\mu} \leftarrow$ gluon interac's

Jaffe: 4 gauge invar $\Delta \boldsymbol{q}, L_{q}, \Delta g, L_{g}$
\checkmark access Δg : this is what's being measured at RHIC, COMPASS
\checkmark interpret $\boldsymbol{L}_{q}: \vec{r} \times \vec{p} \rightarrow$ field-free OAM ... in ∞ momentum frame
x measure L_{q} (expt \& lattice): involves non-local operators except in lightcone gauge $A^{+}=0$
see ongoing work of Wakamatsu PRD 81 (2010), 83 (2011)
\& Chen et al PRL 100 (2008), 103 (2009)

Solenoid with constant I; charged cylinders stationary

Solenoid I decreases to zero ... $d B / d t$ induces $E \rightarrow$ rotates cylinders

so "dynamical" $p-e A$ is the observable one ...

Solenoid with constant I; charged cylinders stationary

Solenoid I decreases to zero ...
$d B / d t$ induces $E \rightarrow$ rotates cylinders

$$
\therefore \overrightarrow{\mathbf{L}}_{\mathrm{cylinders}}=-\hat{z} \frac{\mu_{0} n I Q}{2}\left(R^{2}-a^{2}\right)
$$

so "dynamical" $p-e A$ is the observable one ...

Solenoid I decreases to zero ...
$d B / d t$ induces $E \rightarrow$ rotates cylinders

Solenoid with constant I; charged cylinders stationary

$$
\vec{E}=\frac{Q \hat{s}}{2 \pi \varepsilon_{0} l s}
$$

for $a<s<b$
$\vec{B}=\mu_{0} n I \hat{z}$
for $s<R$
so "dynamical" $p-e A$ is the observable one ...

Solenoid with constant I; charged cylinders stationary

$$
\vec{E}=\frac{Q \hat{s}}{2 \pi \varepsilon_{0} l s}
$$

$$
\text { for } a<s<b
$$

$$
\vec{B}=\mu_{0} n I \hat{z}
$$

$$
\text { for } s<R
$$

$$
\therefore \vec{\wp}_{\text {field }}=\vec{S} / c^{2}
$$

$$
=\varepsilon_{0} \vec{E} \times \vec{B}
$$

$$
=-\hat{\phi} \frac{\mu_{0} n I Q}{2 \pi l s}
$$

$$
\therefore \overrightarrow{\mathbf{L}}_{\text {field }}=\int_{s=a}^{s=R} s \hat{s} \times \vec{\wp}_{\text {field }} d V
$$

$\begin{aligned} \therefore \overrightarrow{\mathbf{L}}_{\text {field }} & =\int_{s=a}^{s=a} s \hat{s} \times \vec{\wp}_{\text {field }} d V \\ & =-\hat{z} \frac{\mu_{0} n I Q}{2}\left(R^{2}-a^{2}\right)\end{aligned}$

$$
=-\hat{z} \frac{\stackrel{s=a}{\mu_{0} n I Q}}{2}\left(R^{2}-a^{2}\right)
$$

Solenoid I decreases to zero ...
$d B / d t$ induces $E \rightarrow$ rotates cylinders

$\therefore \overrightarrow{\mathbf{L}}_{\text {cylinders }}=-\hat{z} \frac{\mu_{0} n I Q}{2}\left(R^{2}-a^{2}\right)$
so "dynamical" $p-e A$ is the observable one ...

Solenoid with constant I; charged cylinders stationary

Solenoid I decreases to zero ...
$d B / d t$ induces $E \rightarrow$ rotates cylinders

$$
\begin{aligned}
& \vec{E}=\frac{Q \hat{s}}{2 \pi \varepsilon_{0} l s} \\
& \text { for } a<s<b \\
& \vec{B}=\mu_{0} n I \hat{z} \\
& \text { for } s<R
\end{aligned} \begin{aligned}
& \therefore \vec{\wp}_{\text {field }}=\vec{S} / c^{2} \\
&=\varepsilon_{0} \vec{E} \times \vec{B} \\
&=-\hat{\phi} \frac{\mu_{0} n I Q}{2 \pi l s}
\end{aligned}
$$

$$
\therefore \overrightarrow{\mathbf{L}}_{\text {field }}=\int_{s=a}^{s=R} s \hat{s} \times \vec{\wp}_{\text {field }} d V
$$

$$
=-\hat{z} \frac{\left.\begin{array}{c}
s=a \\
\mu_{0} n I Q \\
2
\end{array}\left(R^{2}-a^{2}\right), ~()^{2}\right)}{}
$$

to conserve L, but ...

mechanical

Lcylinder
= r xp is

- measurable - distinct from rx(ExB)

so "dynamical" $p-e A$ is the observable one ...

Solenoid with constant I; charged cylinders stationary

Solenoid I decreases to zero ...
$d B / d t$ induces $E \rightarrow \underline{\text { rotates cylinders }}$

$$
\begin{aligned}
& \vec{E}=\frac{Q \hat{s}}{2 \pi \varepsilon_{0} l s} \\
& \text { for } a<s<b \\
& \vec{B}=\mu_{0} n I \hat{z} \\
& \text { for } s<R \\
& \begin{aligned}
\therefore & \vec{\wp}_{\text {field }}=\vec{S} / c^{2} \\
& =\varepsilon_{0} \vec{E} \times \vec{B} \\
& =-\hat{\phi} \frac{\mu_{0} n I Q}{2 \pi l s} \\
\therefore & \overrightarrow{\mathbf{L}}_{\text {field }}=\int_{s=a}^{s=R} s \hat{s} \times \vec{\wp}_{\text {field }} d V \\
\quad & =-\hat{z} \frac{\mu_{0} n I Q}{2}\left(R^{2}-a^{2}\right)
\end{aligned}
\end{aligned}
$$

doesn't help with the meaning of gauge-
covariant $i \boldsymbol{D}^{\mu}=\boldsymbol{i} \boldsymbol{\partial}^{\mu}-\boldsymbol{e A}^{\mu}$ meaning of gauge-
covariant $i D^{\mu}=i \boldsymbol{o}^{\mu}-\boldsymbol{e} A^{\mu}$

Both needed to conserve L, but ...
,mechanical
Lcylinder
$=r \times p$ is

- measurable - distinct from $r \times(E \times B)$
classical intuition

$$
\begin{gathered}
\vec{E}_{\mathrm{ind}}=\hat{\phi} \frac{\mu_{0} n|\dot{I}| s}{2} \\
\text { for } s<R \\
\vec{E}_{\text {ind }}=\hat{\phi} \frac{\mu_{0} n|\dot{I}| R^{2}}{2 s} \\
\text { for } s>R \\
\text { inner }+Q \text { cylinder: } \\
\vec{L}_{+}=\int a \hat{s} \times\left. Q \vec{E}_{\text {ind }}\right|_{s=a} d t \\
\quad=\hat{z} \frac{\mu_{0} n I Q}{2} a^{2}
\end{gathered}
$$

$$
\text { outer }-Q \text { cylinder: }
$$

$$
\vec{L}_{-}=-\hat{z} \frac{\mu_{0} n I Q}{2} R^{2}
$$

$$
\therefore \overrightarrow{\mathbf{L}}_{\mathrm{cylinders}}=-\hat{z} \frac{\mu_{0} n I Q}{2}\left(R^{2}-a^{2}\right)
$$

New Sivers fits give ≈ 0 for antiquarks, but ...

The Kaon Collection

New Sivers fits give ≈ 0 for antiquarks, but ...

The Kaon Collection

New Sivers fits give ≈ 0 for antiquarks, but ..

The Kaon Collection

Theory: Ji's L_{u-d} is rock-solid \& negative

- $\langle x\rangle_{u-d}$: well known
- $\Delta u-\Delta d=g_{A}$: well known
- $E^{(2)}{ }_{u-d}$: all lattice calculatns and XQSM agree

Theory: Ji's L_{u-d} is rock-solid \& negative

- $\langle x\rangle_{\mathrm{u}-\mathrm{d}}$: well known
- $\Delta u-\Delta d=g_{A}$: well known
- $E^{(2)}{ }_{u-d}$: all lattice calculatns and XQSM agree

Compare Jaffe \& Ji calculate explicitly in χ QSM; at quark-model scale:

Negative model value dominated by sea quark L!

Theory: Ji's L_{u-d} is rock-solid \& negative

- $\langle x\rangle_{\mathrm{u}-\mathrm{d}}$: well known
- $\Delta u-\Delta d=g_{A}$: well known
- $E^{(2)}{ }_{u-d}$: all lattice calculatns and XQSM agree

Compare Jaffe \& Ji calculate explicitly in XQSM; at quark-model scale:

	L_{u-d} Jaffe	L_{u-d} Ji
Valence	+0.147	-0.142
Sea	-0.265	-0.188
Total	-0.115	-0.330

Negative model value dominated by sea quark L!

Theory: Ji's L_{u-d} is rock-solid \& negative

- $\langle x\rangle_{u-d}$: well known
- $\Delta u-\Delta d=g_{A}$: well known
- $E^{(2)}{ }_{u-d}$: all lattice calculatns and XQSM agree

Compare Jaffe \& Ji calculate explicitly in XQSM; at quark-model scale:

	L_{u-d} Jaffe	L_{u-d} Ji
Valence	+0.147	-0.142
Sea	-0.265	-0.188
Total	-0.115	-0.330

Negative model value dominated by sea quark L!

Need direct measurement of Sivers for sea quarks:

Spin-dependent Drell-Yan with p or π^{+}beam \& pol'd target

Leptons: clean, surgical tools

sidis h^{\prime}

$$
\sum_{q} e_{q}^{2} \mathbf{f}_{q}^{(\mathrm{H})}(x) \mathbf{D}_{\mathbf{q}}^{\mathrm{b}^{\prime}(z)}
$$

$$
\sum_{q} e_{q}^{2} \mathbf{D}_{\mathbf{q}}^{\mathbf{h}_{1}}\left(z_{1}\right) \mathbf{D}_{\overline{\mathbf{q}}}^{\mathbf{h}_{\mathbf{2}}}\left(z_{2}\right)
$$

Leptons: clean, surgical tools

- Disentangle distribution (f) and fragmentation (D) functions \rightarrow measure all process
- Disentangle quark flavours $q \rightarrow$ measure as many hadron species H, h as possible

Leptons: clean, surgical tools

- Disentangle distribution (f) and fragmentation (D) functions \rightarrow measure all process
- Disentangle quark flavours $q \rightarrow$ measure as many hadron species H, h as possible

These are the only processes where TMD factorization is proven

$$
\sum_{q} e_{q}^{2} \mathbf{f}_{\mathbf{q}}^{(\mathbf{H})}(x) \mathbf{D}_{\mathbf{q}}^{\mathbf{h}^{\prime}}(z)
$$

$$
\sum_{q} e_{q}^{2} \mathbf{D}_{\mathbf{q}}^{\mathbf{h}_{1}}\left(z_{1}\right) \mathbf{D}_{\overline{\mathbf{q}}}^{\mathbf{h}_{2}}\left(z_{2}\right)
$$

$$
\sum_{q} e_{q}^{2} \mathbf{f}_{\mathbf{q}}^{\left(\mathbf{H}_{1}\right)}\left(x_{1}\right) \mathbf{f}_{\overline{\mathbf{q}}}^{\left(\mathbf{H}_{2}\right)}\left(x_{2}\right)
$$

H_{1} Drell-Yan l^{+}

W production

The Missing Spin Program: Drell-Yan

$$
\sum_{q} e_{q}^{2} \mathbf{f}_{\mathbf{q}}^{\left(\mathbf{H}_{\mathbf{1}}\right)}\left(x_{1}\right) \mathbf{f}_{\overline{\mathbf{q}}}^{\left(\mathbf{H}_{\mathbf{2}}\right)}\left(x_{2}\right)
$$

- Clean access to sea quarks e.g. $\Delta \bar{u}(x), \Delta \bar{d}(x)$ at RHIC

The Missing Spin Program: Drell-Yan

$$
\sum_{q} e_{q}^{2} \mathbf{f}_{\mathbf{q}}^{\left(\mathbf{H}_{\mathbf{1}}\right)}\left(x_{1}\right) \mathbf{f}_{\overline{\mathbf{q}}}^{\left(\mathbf{H}_{\mathbf{2}}\right)}\left(x_{2}\right)
$$

- Clean access to sea quarks e.g. $\Delta \bar{u}(x), \Delta \bar{d}(x)$ at RHIC
- Crucial test of TMD formalism \rightarrow sign change of T-odd functions

The Missing Spin Program: Drell-Yan

$$
\sum_{q} e_{q}^{2} \mathbf{f}_{\mathbf{q}}^{\left(\mathbf{H}_{\mathbf{1}}\right)}\left(x_{1}\right) \mathbf{f}_{\overline{\mathbf{q}}}^{\left(\mathbf{H}_{\mathbf{2}}\right)}\left(x_{2}\right)
$$

- Clean access to sea quarks e.g. $\Delta \bar{u}(x), \Delta \bar{d}(x)$ at RHIC
- Crucial test of TMD formalism \rightarrow sign change of T-odd functions
- A complete spin program requires multiple hadron species
\rightarrow nucleon \& meson beams

