Overview of transversity

Alessandro Bacchetta
Pavia University and INFN, Pavia

INFN

C : mamame

Helicity

(big brother)

Transversity

 (little brother)
2002: no data on transversity

2002: no data on transversity

2012: about 100 data points, first extractions

2002: no data on transversity

2012: about 100 data points, first extractions

202\%: hope we will be able to give the same kind of talk as Werner and Marcin

Theory: general remarks

One slide on TMDs quark pol.

Twist-2 TMDs

One slide onTMDs

quark pol.

Twist-2 TMDs
talks by N. Makins, B. Pasquini, N. Makins, C. Lorcé, A. Prokudin

One slide on TMDs

quark pol.

Integrated on transv. momentum

quark pol.

Helicity $\quad g_{1}$

talks by Werner Vogelsang, Marcin Stolarski

Helicity $\quad g_{1}$

talks by Werner Vogelsang, Marcin Stolarski

Transversity h_{1}

Helicity $\quad g_{1}$

Transversity $\quad h_{1}$

Gluons...

Gluons...

Gluons...

Helicity

Helicity

Transversity

Transversity

Boost

Helicity

Transversity

- Difference transversity/helicity: relativistic effect

pQCD framework

- HELICITY: solid pQCD framework

pQCD framework

- HELICITY: solid pQCD framework
-TRANSVERSITY: solid pQCD framework for collinear factorization,TMD factorization needs some work.
see talk by Werner Vogelsang

Spin sum rules

Helicity

see talks by
Wakamatsu, Lorcé, Pasquini

Spin sum rules

Helicity

see talks by Wakamatsu, Lorcé, Pasquini

Transversity

Bakker, Leader, Trueman, PRD 70 (04)

Spin sum rules

Helicity

see talks by Wakamatsu, Lorcé, Pasquini

Transversity

Bakker, Leader, Trueman, PRD 70 (04)

Helicity

Transversity

Helicity

Transversity

It is important to look at the proton's spin from two different sides

Phenomenology: general remarks

Observables: helicity

Observables: transversity

DIS

SIDIS

πp Drell-Yan

Observables: transversity

Observables: transversity

Collinear factorization

Observables: transversity

Collinear
factorization

Observables: transversity

Collinear factorization
 dihadron
interference FF
factorization

Observables: transversity

Collinear
factorization

Boer-Mulders
factorization

$x-Q^{2}$ coverage: helicity

M. Stratmann, talk at DIS20 2

$x-Q^{2}$ coverage: transversity

$x-Q^{2}$ coverage: transversity

Data points: helicity

experiment	process	$N_{\text {data }}$
EMC [2]	DIS (p)	10
SMC [3]	DIS (p)	12
SMC [3]	DIS (d)	12
COMPASS [4]	DIS (d)	15
E142 [5]	DIS (n)	8
E143 [6]	DIS (p)	28
E143 [6]	DIS (d)	28
E154 [7]	DIS (n)	11
E155 [8]	DIS (p)	24
E155 [9]	DIS (d)	24
HERMES [10]	DIS (He)	9
HERMES [11]	DIS (p)	15
HERMES [11]	DIS (d)	15
HALL-A [12]	DIS (n)	3
CLAS [13]	DIS (p)	10
CLAS [13]	DIS (d)	10
DSSVO8, PRDD		

SMC [14]	SIDIS (p, h^{+})	12
SMC [14]	SIDIS (p, h^{-})	12
SMC [14]	SIDIS (d, h^{+})	12
SMC [14]	SIDIS (d, h^{-})	12
HERMES [15]	SIDIS (p, h^{+})	9
HERMES [15]	SIDIS (p, h^{-})	9
HERMES [15]	SIDIS (d, h^{+})	9
HERMES [15]	SIDIS (d, h^{-})	9
HERMES [10]	SIDIS (He, h^{+})	9
HERMES [10]	SIDIS (He, h^{-})	9
HERMES [15]	SIDIS (p, π^{+})	9
HERMES [15]	SIDIS (p, π^{-})	9
HERMES [15]	SIDIS (d, π^{+})	9
HERMES [15]	SIDIS (d, π^{-})	9
HERMES [15]	SIDIS (d, K^{+})	9
HERMES [15]	SIDIS (d, K^{-})	9
HERMES [15]	SIDIS ($\mathrm{d}, K^{+}+K^{-}$)	9
COMPASS [16]	SIDIS (d, h^{+})	12
COMPASS [16]	SIDIS (d, h^{-})	12
PHENIX [22]	pp ($200 \mathrm{GeV}, \pi^{0}$)	10
PHENIX [23]	pp ($\left.200 \mathrm{GeV}, \pi^{0}\right)$	10
PHENIX [24]	pp ($62 \mathrm{GeV}, \pi^{0}$)	5
STAR [25]	pp (200 GeV, jet)	10
STAR (prel.) [26]	pp (200 GeV, jet)	9
TOTAL:		467

Data points: helicity

experiment	process	$N_{\text {data }}$		SMC [14]	SIDIS (p, $\left.h^{+}\right)$
			SMC [14]	SIDIS (p, $\left.h^{-}\right)$	12
EMC [2]		DIS (p)	10		SMC [14]

Extractions: helicity

- DSSV08, arXiv:0904.382I (467 points -- DIS, SIDIS, pp)
- LSSIO, arXiv: I 0 I 0.0574 (I 043 -- DIS,SIDIS)
- BBIO, arXiv:I005.3II3 (I385 -- DIS)
- AAC, arXiv:0808.04I3 (45I points -- DIS, SIDIS, pp)
- COMING SOON: Neural Network PDFs, talk by E. Nocera at DIS20I2

Data points: transversity

	Hadron	N. Points
	π^{+}	7
	π^{-}	7
	π^{0}	7
	K^{+}	7
COMPASS d	K^{-}	7
	π^{+}	9
	π^{-}	9
COMPASS p	K^{+}	9
	K^{-}	9
	$h^{+} h^{-}$	9
Total	h^{+}	9
	h^{-}	9
	$h^{+} h^{-}$	9
	π^{+}	4

Data points: transversity

	Hadron	N. Points
HERMES	π^{+}	7
	π^{-}	7
	π^{0}	7
	K^{+}	7
		7
COMPASS d	π^{+}	9
		9
	K^{+}	9
	K^{-}	9
	$h^{+} h^{-}$	9
$\begin{gathered} \text { COMPASS } p \\ 2007 \end{gathered}$	h^{+}	9
	h^{-}	9
	$h^{+} h^{-}$	9
JLab Hall A	π^{+}	4
	π^{-}	4
Total		115

Data points: transversity

	Hadron	N. Points
HERMES	π^{+}	7
	π^{-}	7
	π^{0}	7
	K^{+}	7
		7
COMPASS d	π^{+}	9
		9
	K^{+}	9
2007	h^{-}	
	$h^{+} h^{-}$	y Feder
JLab Hall A	π^{+}	4
	π^{-}	4
Total		115

Transversity from
 Collins asymmetry

Single hadron

SIDIS

$$
A_{D I S}\left(x, z, P_{h \perp}^{2}\right)=-\left\langle C_{y}\right\rangle \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, p_{T}^{2}\right) \otimes_{C} H_{1, q}^{\perp}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1, q}\left(z, k_{T}^{2}\right)}
$$

Single hadron

SIDIS

$$
A_{D I S}\left(x, z, P_{h \perp}^{2}\right)=-\left\langle C_{y}\right\rangle \frac{\sum_{q} e_{q}^{2} h_{1}^{q}\left(x, p_{T}^{2}\right) \otimes_{C} H_{1, q}^{\perp}\left(z, k_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1, q}\left(z, k_{T}^{2}\right)}
$$

$e^{+} e^{-}$

$$
A_{e+e-}\left(z, \bar{z}, Q_{T}^{2}\right)=-\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle} \frac{\sum_{q} e_{q}^{2} H_{1, q}^{\perp}\left(z, k_{T}^{2}\right) \otimes_{C}^{\prime} H_{1, \bar{q}}^{\perp}\left(\bar{z}, \bar{k}_{T}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1, q}\left(z, k_{T}^{2}\right) \otimes^{\prime} D_{1, \bar{q}}\left(\bar{z}, \bar{k}_{T}^{2}\right)}
$$

Torino's transversity

Anselmino et al. , arXiv:08 I 2.4366, ask A. Prokudin for more details

Torino's transversity

Anselmino et al. , arXiv:08 I 2.4366, ask A. Prokudin for more details

Comparison with models

Axial and tensor charges

$$
\Delta \Sigma_{q}=\int_{0}^{1} d x g_{1}^{q+\bar{q}} \quad \delta \Sigma_{q}=\int_{0}^{1} d x h_{1}^{q-\bar{q}}
$$

Axial and tensor charges

$$
\Delta \Sigma_{q}=\int_{0}^{1} d x g_{1}^{q+\bar{q}} \quad \delta \Sigma_{q}=\int_{0}^{1} d x h_{1}^{q-\bar{q}}
$$

Axial
Tensor

Axial and tensor charges

$$
\Delta \Sigma_{q}=\int_{0}^{1} d x g_{1}^{q+\bar{q}} \quad \delta \Sigma_{q}=\int_{0}^{1} d x h_{1}^{q-\bar{q}}
$$

Axial
Tensor

	Lattice (I.4 GeV)	DSSV (I GeV)	Lattice (I.4 GeV)	Ans (0.9 GeV)
u	0.64	0.82	0.84	0.54
d	-0.35	-0.45	-0.23	-0.23
s	-0.11	-0.11	-0.05	0
Sum	0.18	0.26	0.56	0.39

S. Aoki et al., PRD 56 (1997)
see also M. Göckeler et al. [QCDSF/UKQCD], PLB (05)

Charge Errors

	Anselmino
$\delta \Sigma_{\mathrm{u}}$	$0.54_{-0.22}^{+0.09}$
$\delta \Sigma_{\mathrm{d}}$	$-0.23_{-0.16}^{+0.09}$

	DSSV08
$\Delta \Sigma_{\mathrm{u}}$	$0.793_{-0.034}^{+0.028}$
$\Delta \Sigma_{\mathrm{d}}$	$-0.416_{-0.025}^{+0.035}$

Charge Errors

	Anselmino
$\delta \Sigma_{\mathrm{u}}$	$0.54_{-0.22}^{+0.09}$
$\delta \Sigma_{\mathrm{d}}$	$-0.23_{-0.16}^{+0.09}$

	DSSV08
$\Delta \Sigma_{\mathrm{u}}$	$0.793_{-0.034}^{+0.028}$
$\Delta \Sigma_{\mathrm{d}}$	$-0.416_{-0.025}^{+0.035}$

The error is large

Charge Errors

	Anselmino		DSSV08
$\delta \Sigma_{\mathrm{u}}$	$0.54_{-0.22}^{+0.09}$	$\Delta \Sigma_{\mathrm{u}}$	$0.793_{-0.034}^{+0.028}$
$\delta \Sigma_{\mathrm{d}}$	$-0.23_{-0.16}^{+0.09}$		$\Delta \Sigma_{\mathrm{d}}$

The error is large, but probably still largely underestimated

Charge Errors

	Anselmino		
$\delta \Sigma_{\mathrm{u}}$	$0.54_{-0.22}^{+0.09}$	$\Delta \Sigma_{\mathrm{u}}$	$0.793_{-0.034}^{+0.028}$
$\delta \Sigma_{\mathrm{d}}$	$-0.23_{-0.16}^{+0.09}$		$\Delta \Sigma_{\mathrm{d}}$

The error is large, but probably still largely underestimated

NNPDFpol1.0 DSSV08

Example of

$$
\Delta \Sigma
$$

$$
0.32 \pm 0.11 \quad 0.26 \pm 0.03
$$

Neural Network results
talk by E. Nocera at DIS2012

[0] Anselmino et al. , arXiv:08 I 2.4366
[I] Diquark spectator model, Cloet, Bentz, Thomas, PLB 659 (08)
[2] Chiral quark soliton model, Wakamatsu, PLB 653 (07)
[3] Lattice QCD, Goekeler et al. PLB 627 (05) [4] QCD sum rules, He, Ji, PRD 52 (95)
[5] Const. quark model, Pasquini et al. PRD 76 (07)
[6] SU(6) spin-flavor symmetry, Gamberg, Goldstein, PRL 87 (01)

The problem of evolution

Effects ofTMD evolution

NEW and very important. Only done for SIVERS

Aybat, Rogers, PRD 85 (20| 2)
Aybat, Prokudin, Rogers, arXiv: I I 2.4423
see Alexei Prokudin's talk

Effects ofTMD evolution

NEW and very important. Only done for SIVERS

Aybat, Rogers, PRD 85 (20| 2)
Aybat, Prokudin, Rogers, arXiv: I | 2.4423
see Alexei Prokudin's talk

Effects ofTMD evolution

SIVERS FUNCTION - TMD

SIVERS FUNCTION - DGLAP

Anselmino, Boglione, Melis, arXiv: I 204. 1239 see Alexei Prokudin's talk

Effects ofTMD evolution

SIVERS FUNCTION - TMD

SIVERS FUNCTION - DGLAP

Sivers becomes BIGGER at low Q

Anselmino, Boglione, Melis, arXiv: I 204.1239 see Alexei Prokudin's talk

Effects ofTMD evolution

SIVERS FUNCTION - TMD

SIVERS FUNCTION - DGLAP

Sivers becomes BIGGER at low Q

 Is it similar for Collins?
SIDIS
 (2.5 GeV²)

SIDIS
(2.5 GeV²)

Transversity from dihadron interference FF

IWHSS 2011 The dihadron way to transversity is opening

IWHSS 2012 The dihadron way to transversity HAS OPENED

Two hadrons

SIDIS

$$
A_{D I S}\left(x, z, M_{h}^{2}\right)=-\left\langle C_{y}\right\rangle \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) \frac{|\boldsymbol{R}|}{M_{h}} H_{1, q}^{\varangle}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, q}\left(z, M_{h}^{2}\right)}
$$

Two hadrons

SIDIS

$$
A_{D I S}\left(x, z, M_{h}^{2}\right)=-\left\langle C_{y}\right\rangle \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) \frac{|\boldsymbol{R}|}{M_{h}} H_{1, q}^{\varangle}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, q}\left(z, M_{h}^{2}\right)}
$$

$e^{+} e^{-}$

$$
A_{e+e-}\left(z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right)=-\frac{\left\langle\sin ^{2} \theta_{2}\right\rangle\langle\sin \theta\rangle\langle\sin \bar{\theta}\rangle}{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle} \frac{\sum_{q} e_{q}^{2}|R| R_{h} \mid}{M_{1}} H_{1, q}\left(z, M_{h}^{2}\right) \frac{|\bar{R}|}{M_{h}} H_{1, \bar{q}}^{\varangle}\left(\bar{z}, \bar{M}_{h}^{2}\right)
$$

Simplified expressions

SIDIS (proton, $\pi^{-} \pi^{+}$)

$$
\frac{n_{u}^{\uparrow}}{n_{u}^{\top}}=\frac{\iint \frac{|\boldsymbol{R}|}{M_{h}} H_{1, u}^{\triangleleft}\left(z, M_{h}^{2}\right)}{\iint D_{1, u}\left(z, M_{h}^{2}\right)}
$$

$$
A_{D I S}(x) \approx-\left\langle C_{y}\right\rangle \frac{\left(h_{1}^{u_{v}}(x)-h_{1}^{d_{v}}(x) / 4\right)}{\left(f_{1}^{u+\bar{u}}(x)+f_{1}^{d+\bar{d}}(x) / 4\right)} \frac{n_{u}^{\uparrow}}{n_{u}}
$$

Simplified expressions

SIDIS (proton, $\pi^{-} \pi^{+}$)

$$
\frac{n_{u}^{\uparrow}}{n_{u}}=\frac{\iint \frac{|R|}{M_{h}} H_{1, u}^{\varangle}\left(z, M_{h}^{2}\right)}{\iint D_{1, u}\left(z, M_{h}^{2}\right)}
$$

$$
A_{D I S}(x) \approx-\left\langle C_{y}\right\rangle \frac{\left(h_{1}^{u_{v}}(x)-h_{1}^{d_{v}}(x) / 4\right)}{\left(f_{1}^{u+\bar{u}}(x)+f_{1}^{d+\bar{d}}(x) / 4\right)} \frac{n_{u}^{\uparrow}}{n_{u}}
$$

From BELLE: $\frac{n_{u}^{\uparrow}}{n_{u}}=-21 \pm 2 \%$ at COMPASS

BELLE data

Vossen, Seidl et al. (Belle), PRL 107 (201 I)

Extraction 201|

Bacchetta, Courtoy, Radici, PRL 107 (201 I)

Extraction 201|

$x h_{1}^{u_{v}}(x)-\frac{x}{4} h_{1}^{d_{v}}(x)$

Bacchetta, Courtoy, Radici, PRL 107 (201 I)

NEW extraction

from proton

Based on freshly published: arXiv: I 202.6 | 50 [hep-ex]

NEW extraction

from proton

from deuteron

Based on freshly published: arXiv: I $202.6 \mid 50$ [hep-ex]

NEW extraction

Torino's fit

NEW extraction

Torino's fit

Our extraction does not contradict Torino's

Also from pp collisions

R. Yang, Beijing Transversity Workshop, 2008

Status of transversity studies

