Moments of Generalized Parton Distributions from lattice QCD

C. Alexandrou

University of Cyprus and Cyprus Institute
0 The Cyprus

International Workshop on Hadron Structure and Spectroscopy Lisbon, 16-18 April 2012

Outline

(1) Introduction

- QCD on the lattice
- Computational cost
(2) Recent results
- Mass of low-lying hadrons
- Results on nucleon axial charge, Dirac and Pauli radii
- Δ Resonance
(3) Nucleon Generalized form factors
- Definitions
- Lattice QCD evaluation
(4) Results on nucleon parton distributions
- Nucleon momentum fraction
- Nucleon spin
(5) Conclusions

Introduction

QCD-Gauge theory of the strong interaction
Lagrangian: formulated in terms of quarks and gluons

$$
\begin{aligned}
\mathcal{L}_{Q C D} & =-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum_{f=u, d, s, c, b, t} \bar{\psi}_{f}\left(i \gamma^{\mu} D_{\mu}-m_{f}\right) \psi_{f} \\
D_{\mu} & =\partial_{\mu}-i g \frac{\lambda^{a}}{2} A_{\mu}^{a}
\end{aligned}
$$

This "simple" Lagrangian produces the amazingly rich structure of strongly interacting matter in our universe.

Numerical simulation of QCD provides essential input for a wide class of complex strong interaction phenomena

- QCD phase diagram relevant for Quark-Gluon Plasma studied in heavy ion collisions at RHIC and LHC affecting the early evolution of the Universe
- Nuclear forces that affect the large scale structure of the Universe
- Hadron structure studied in experimental programs at CERN, JLab, Mainz, DESY
- Momentum distribution of quarks and gluons in the nucleon
- Hadron form factors e.g. the nucleon axial charge g_{A}

QCD on the lattice

- Discretization of space-time in 4 Euclidean dimensions \rightarrow Rotation into imaginary time $x_{0} \rightarrow i x_{4}$ is the most drastic modification
It forms the basis of LQCD \rightarrow by relating quantum field theory to statistical mechanics it allows for a purely numerical treatment by means of Monte Carlo techniques.
- The quantities usually studied are matrix elements of local operators $\left\langle h^{\prime}\left(p^{\prime}\right)\right| \mathcal{O}|h(p)\rangle$ between hadronic states h.
- Most LQCD results for matrix elements have to be matched to typically the MS scheme at a certain scale μ. This requires a matching of renormalization effects. Some exceptions exist like hadron masses.

Like continuum QCD lattice QCD has as unknown input parameters the coupling constant α_{s} and the masses of the up, down, strange, charm and bottom quarks.
\Longrightarrow Lattice QCD provides a well-defined approach to calculate observables non-perturbative starting directly from the QCD Langragian.

Consider simplest isotropic hypercubic grid: $a=a_{S}=a_{T}$ and size $N_{S} \times N_{S} \times N_{S} \times N_{T}, N_{T}>N_{S}$.

- Finite Volume:

1. Finite volume effects need to be studied \rightarrow Take box sizes such that $L_{S} m_{\pi} \gtrsim 3.5$. 2. Only discrete values of momentum in units of $2 \pi / L_{S}$ are allowed.

- Finite lattice spacing: Need at least three values of the lattice spacing in order to extrapolate to the continuum limit.
- q^{2}-values: Fourier transform of lattice results in coordinate space taken numerically \rightarrow for large values of momentum transfer results are too noisy \Longrightarrow Limited to $Q^{2}=-q^{2} \sim 2 \mathrm{GeV}^{2}$

QCD on the lattice

- Discretization of space-time in 4 Euclidean dimensions \rightarrow Rotation into imaginary time $x_{0} \rightarrow i x_{4}$ is the most drastic modification
It forms the basis of LQCD \rightarrow by relating quantum field theory to statistical mechanics it allows for a purely numerical treatment by means of Monte Carlo techniques.
- The quantities usually studied are matrix elements of local operators $\left\langle h^{\prime}\left(p^{\prime}\right)\right| \mathcal{O}|h(p)\rangle$ between hadronic states h.
- Most LQCD results for matrix elements have to be matched to typically the MS scheme at a certain scale μ. This requires a matching of renormalization effects. Some exceptions exist like hadron masses.

Like continuum QCD lattice QCD has as unknown input parameters the coupling constant α_{s} and the masses of the up, down, strange, charm and bottom quarks.
\Longrightarrow Lattice QCD provides a well-defined approach to calculate observables non-perturbative starting directly from the QCD Langragian.

Consider simplest isotropic hypercubic grid: $a=a_{S}=a_{T}$ and size $N_{S} \times N_{S} \times N_{S} \times N_{T}, N_{T}>N_{S}$.

- Finite Volume:

1. Finite volume effects need to be studied \rightarrow Take box sizes such that $L_{S} m_{\pi} \gtrsim 3.5$.
2. Only discrete values of momentum in units of $2 \pi / L_{S}$ are allowed.

- Finite lattice spacing: Need at least three values of the lattice spacing in order to extrapolate to the continuum limit.
- q^{2}-values: Fourier transform of lattice results in coordinate space taken numerically \rightarrow for large values of momentum transfer results are too noisy \Longrightarrow Limited to $Q^{2}=-q^{2} \sim 2 \mathrm{GeV}^{2}$.

Computational cost

Simulation cost: $C_{\text {sim }} \propto\left(\frac{300 \mathrm{Mev}}{m_{\pi}}\right)^{C_{m}}\left(\frac{L}{2 \mathrm{tm}}\right)^{C_{L}}\left(\frac{0.1 \mathrm{fm}}{a}\right)^{C_{a}}$

Coefficients c_{m}, c_{L} and c_{a} depend on the discretized action used for the fermions.
State-of-the-art simulations use improved algorithms:

- Mass preconditioner, M. Hasenbusch, Phys. Lett. B519 (2001) 177
- Multiple time scales in the molecular dynamics updates
\Longrightarrow for twisted mass fermions: $c_{m} \sim 4, c_{L} \sim 5$ and $c_{a} \sim 6$.
- Results at physical quark masses require $\mathcal{O}(1)$ Pflop. Years.
- After post-diction of well measured quantities the goal is to predict quantities that are difficult or impossible to measure experimentally.
$\mathrm{L}=2.1 \mathrm{fm}, \mathrm{a}=0.089 \mathrm{fm}, \mathrm{K}$. Jansen and C. Urbach, arXiv:0905.3331
We are currently at the Petaflop scale: 10^{15} Flops (arithmetic operations per sec) Exaflops machines are already being planned: 10^{18} Flops

Mass of low-lying hadrons

$N_{F}=2+1$ smeared Clover fermions, BMW Collaboration, S. Dürr et al. Science 322 (2008)
$N_{F}=2$ twisted mass fermions, ETM Collaboration, C. Alexandrou et al. PRD (2008)

- BMW with $N_{F}=2+1$:
- 3 lattice spacings:
$a \sim 0.125,0.085,0.065 \mathrm{fm}$ set by m_{\equiv}
- Pion masses: $m_{\pi} \sim 190 \mathrm{MeV}$
- Volumes: $m_{\pi}^{\min } L \sim 4$
- ETMC with $N_{F}=2$:
- 3 lattice spacings:
$a=0.089,0.070, a=0.056 \mathrm{fm}$, set by
$\Rightarrow m_{\pi}>260 \mathrm{MeV}$
- Volumes: $m_{\pi}^{\min } L>3.3$

Good agreement between different discretization schemes \Longrightarrow Significant progress in understanding the masses of low-lying mesons and baryons

Mass of low-lying hadrons

$N_{F}=2+1$ smeared Clover fermions, BMW Collaboration, S. Dürr et al. Science 322 (2008)
$N_{F}=2$ twisted mass fermions, ETM Collaboration, C. Alexandrou et al. PRD (2008)

- BMW with $N_{F}=2+1$:
- 3 lattice spacings: $a \sim 0.125,0.085,0.065 \mathrm{fm}$ set by $m_{\text {三 }}$
- Pion masses: $m_{\pi} \sim 190 \mathrm{MeV}$
- Volumes: $m_{\pi}^{\min } L \sim 4$
- ETMC with $N_{F}=2$:
- 3 lattice spacings:
$a=0.089,0.070, a=0.056 \mathrm{fm}$, set by
m_{N}
- $m_{\pi} \sim 260 \mathrm{MeV}$
- Volumes: $m_{\pi}^{\min } L \sim 3.3$

Good agreement between different discretization schemes \Longrightarrow Significant progress in understanding the masses of low-lying mesons and baryons

Nucleon axial charge

- Many lattice studies down to lowest pion mass of $m_{\pi} \sim 300 \mathrm{MeV}$ \Longrightarrow Lattice data in general agreement
- Axial-vector FFs: $A_{\mu}^{a}=\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x)$ $\Longrightarrow \frac{1}{2}\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right]$

Axial charge is well known experimentally, straight forward to compute in lattice QCD

- Agreement among recent lattice results all use non-perturbative Z_{A}
- Weak light quark mass dependence
- What can we say about the physical value of g_{A} ?
- TMF: C. A. et al. (ETMC), PRD 83 (2011) 045010
- DWF: T. Yamazaki et al., (RBC-UKQCD), PRD 79 (2009) 14505; S. Ohta, arXiv:1011.1388
- Hybrid:J. D. Bratt et al. (LHPC),PRD 82 (2010) 094502
- Clover:D. Pleiter et al. (QCDSF), arXiv:1101.2326

Physical results on g_{A}

- What can we say about the physical value of g_{A} ?
- Use results obtained with twisted mass fermions C. A. et al. (ETMC), Phys. Rev. D83 (2011) 045010
- Take continuum limit and estimate volume corrections, A. Ali Khan, et al., PRD 74, 094508 (2006)
- Use one-loop chiral perturbation theory in the small scale expansion (SSE), T. R. Hemmert, M. Procura and W. Weise, PRD 68, 075009 (2003).
- 3 fit parameters, $g_{A}^{0}=1.10(8), g_{\Delta \Delta}=2.1(1.3)$, $c^{S S E}(1 \mathrm{GeV})=-0.7(1.7)$, axial $\mathrm{N} \Delta$ coupling fixed to 1.5: $\Rightarrow g_{A}=1.14(6)$
- Fitting lattice results directly leads to $g_{A}=1.12(7)$

Lattice determination of the axial charges of other baryons can provide input for χ PT, H.- W. Lin and K. Orginos, PRD 79, 034507 (2009); M. Gockeler et l., arXiv:1102.3407

Dirac and Pauli isovector radii of the nucleon

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| j^{\mu}(0)|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right] u_{N}(p, s)
$$

Dirac and Pauli radii: $r_{1,2}^{2}=-\left.\frac{6}{F_{1,2}^{(0)}} \frac{d F_{1,2}}{d q^{2}}\right|_{q^{2} \rightarrow 0}$
Use a dipole Ansatz to fit the q^{2}-dependence of F_{1} and F_{2}.

- TMF: C. A. et al. (ETMC), PRD83 (2011) 094502
- Clover: S. Collins et al. (QCDSF), Phys.Rev. D84 (2011) 074507
- DWF: S. N. Syritsyn et al. (LHPC), PRD 81, 034507 (2010); T. Yamazaki et al. (RBC-UKQCD), PRD 79, 114505 (2009)
- Hybrid:J. D. Bratt et al. (LHPC), Phys. Rev. D82, 094502 (2010)

Dirac and Pauli isovector radii of the nucleon

$$
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| j^{\mu}(0)|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma{ }^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right] u_{N}(p, s)
$$

Anomalous magnetic moment: $F_{2}(0) \frac{m_{N}^{\text {phys }}}{m_{N}^{\text {lat }}}$

- TMF: C. A. et al. (ETMC), PRD83 (2011) 094502
- Clover: S. Collins et al. (QCDSF), Phys.Rev. D84 (2011) 074507
- DWF: S. N. Syritsyn et al. (LHPC), PRD 81, 034507 (2010); T. Yamazaki et al. (RBC-UKQCD), PRD 79, 114505 (2009)
- Hybrid:J. D. Bratt et al. (LHPC), Phys. Rev. D82, 094502 (2010)

Δ electromagnetic form factors

$\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| j^{\mu}(0)|\Delta(p, s)\rangle=-\bar{u}_{\alpha}\left(p^{\prime}, s^{\prime}\right)\left\{\left[F_{1}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{3}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \gamma^{\mu}+\left[F_{2}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{4}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \frac{i \sigma}{2 M_{\Delta}} q_{\nu}\right\} u_{\beta}(p, s)$
with e.g. the quadrupole form factor given by: $G_{E 2}=\left(F_{1}^{*}-\tau F_{2}^{*}\right)-\frac{1}{2}(1+\tau)\left(F_{3}^{*}-\tau F_{4}^{*}\right)$, where $\tau \equiv Q^{2} /\left(4 M_{\Delta}^{2}\right)$
Construct an optimized source to isolate $G_{E 2} \rightarrow$ additional sequential propagators needed.
Neglect disconnected contributions in this evaluation.

Transverse charge density of a Δ polarized along the x-axis can be defined in the infinite momentum frame \rightarrow $\rho_{T \frac{3}{2}}^{\Delta}(\vec{b})$ and $\rho_{T \frac{1}{2}}^{\Delta}(\vec{b})$.
Using $G_{E 2}$ we can predict 'shape' of Δ.

Δ with spin $3 / 2$ projection elongated along spin axis compared to the Ω^{-}

[^0]
Definition of Generalized Form Factors

High energy scattering: Formulate in terms of light-cone correlation functions, M. Diehl, Phys. Rep. 388 (2003) Consider one-particle states p^{\prime} and $p \rightarrow$ Generalized Parton Distributions (GPDs), X. Ji, J. Phys. G24(1998)1181

$$
F \cdot\left(x, \xi, q^{2}\right)=\frac{1}{2} \int \frac{d \lambda}{2 \pi} e^{i x \lambda}\left\langle p^{\prime}\right| \bar{\psi}(-\lambda n / 2)^{`} \mathcal{P} e^{i g-\lambda / 2} \int_{-\lambda / 2}^{\lambda / 2 n \cdot A(n \alpha)} \psi(\lambda n / 2)|p\rangle
$$

where $q=p^{\prime}-p, \bar{P}=\left(p^{\prime}+p\right) / 2, n$ is a light-cone vector and $\bar{P} . n=1$

$$
\begin{aligned}
\Gamma & =\pitchfork: \rightarrow \frac{1}{2} \bar{u}_{N}\left(p^{\prime}\right)\left[\hbar H\left(x, \xi, q^{2}\right)+i \frac{n_{\mu} q_{\nu} \sigma^{\mu \nu}}{2 m_{N}} E\left(x, \xi, q^{2}\right)\right] u_{N}(p) \\
\Gamma & =\not n \gamma_{5}: \rightarrow \frac{1}{2} \bar{u}_{N}\left(p^{\prime}\right)\left[\not \hbar \gamma_{5} \tilde{H}\left(x, \xi, q^{2}\right)+\frac{n \cdot q \gamma_{5}}{2 m_{N}} \tilde{E}\left(x, \xi, q^{2}\right)\right] u_{N}(p) \\
\Gamma & =n_{\mu} \sigma^{\mu \nu}: \rightarrow \text { tensor GPDs } .
\end{aligned}
$$

"Handbag" diagram

Forward matrix elements $F^{\cdot}(x, 0,0)$, measured in DIS, connected to the parton distributions $q(x), \Delta q(x), \delta q(x)$

- Diagonal matrix element $\langle P| \mathcal{O}(x)|P\rangle$ (DIS) \rightarrow moments of parton distributions:
- Off-diagonal matrix elements (DVCS) \rightarrow generalized form factors

Definition of Generalized Form Factors

High energy scattering: Formulate in terms of light-cone correlation functions, M. Diehl, Phys. Rep. 388 (2003) Consider one-particle states p^{\prime} and $p \rightarrow$ Generalized Parton Distributions (GPDs), X. Ji, J. Phys. G24(1998)1181

$$
F \cdot\left(x, \xi, q^{2}\right)=\frac{1}{2} \int \frac{d \lambda}{2 \pi} e^{i x \lambda}\left\langle p^{\prime}\right| \bar{\psi}(-\lambda n / 2)^{`} \mathcal{P} e^{i g \int_{-\lambda / 2}^{\lambda / 2} d \alpha n \cdot A(n \alpha)} \psi(\lambda n / 2)|p\rangle
$$

where $q=p^{\prime}-p, \bar{P}=\left(p^{\prime}+p\right) / 2, n$ is a light-cone vector and $\bar{P} . n=1$

$$
\begin{aligned}
\Gamma & =\pitchfork: \rightarrow \frac{1}{2} \bar{u}_{N}\left(p^{\prime}\right)\left[\hbar H\left(x, \xi, q^{2}\right)+i \frac{n_{\mu} q_{\nu} \sigma^{\mu \nu}}{2 m_{N}} E\left(x, \xi, q^{2}\right)\right] u_{N}(p) \\
\Gamma & =\not n \gamma_{5}: \rightarrow \frac{1}{2} \bar{u}_{N}\left(p^{\prime}\right)\left[\not \hbar \gamma_{5} \tilde{H}\left(x, \xi, q^{2}\right)+\frac{n \cdot q \gamma_{5}}{2 m_{N}} \tilde{E}\left(x, \xi, q^{2}\right)\right] u_{N}(p) \\
\Gamma & =n_{\mu} \sigma^{\mu \nu}: \rightarrow \text { tensor GPDs } .
\end{aligned}
$$

"Handbag" diagram

Forward matrix elements $F \cdot(x, 0,0)$, measured in DIS, connected to the parton distributions $q(x), \Delta q(x), \delta q(x)$ Expansion of the light cone operator leads to a tower of local twist-2 operators $\mathcal{O}^{\mu \mu_{1} \ldots \mu_{n}}$

- Diagonal matrix element $\langle P| \mathcal{O}(x)|P\rangle$ (DIS) \rightarrow moments of parton distributions:

$$
\begin{aligned}
& \mathcal{O}_{q}^{\mu \mu_{1} \ldots \mu_{n}}=\bar{\psi} \gamma^{\{\mu} i D^{\mu_{1}} \ldots i D^{\left.\mu_{n}\right\}} \psi \quad \stackrel{\text { unpolarized }}{\rightarrow}\left\langle x^{n}\right\rangle_{q}=\int_{0}^{1} d x x^{n}\left[q(x)-(-1)^{n} \bar{q}(x)\right] \\
& \tilde{\mathcal{O}}_{\Delta q}^{\mu \mu_{1} \ldots \mu_{n}}=\bar{\psi} \gamma_{5} \gamma^{\{\mu} i D^{\mu_{1}} \ldots i D^{\left.\mu_{n}\right\}} \psi \quad \stackrel{\text { helicity }}{\rightarrow} \quad\left\langle x^{n}\right\rangle_{\Delta q}=\int_{0}^{1} d x x^{n}\left[\Delta q(x)+(-1)^{n} \Delta \bar{q}(x)\right] \\
& \mathcal{O}_{\delta q}^{\rho \mu \mu_{1} \ldots \mu_{n}}=\bar{\psi} \sigma^{\rho\{\mu} i D^{\mu_{1}} \ldots i D^{\left.\mu_{n}\right\}} \psi \quad \stackrel{\text { transversity }}{\rightarrow}\left\langle x^{n}\right\rangle_{\delta q}=\int_{0}^{1} d x x^{n}\left[\delta q(x)-(-1)^{n} \delta \bar{q}(x)\right] \\
& \text { where } q=q_{\downarrow}+q_{\uparrow}, \Delta q=q_{\downarrow}-q_{\uparrow}, \delta q=q_{T}+q_{\perp}
\end{aligned}
$$

- Off-diagonal matrix elements (DVCS) \rightarrow generalized form factors

Nucleon generalized form factors

Decomposition of matrix elements into generalized form factors:

$$
\begin{gathered}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{q}^{\mu \mu_{1} \ldots \mu n}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\sum_{i=0,2, \ldots\left(A_{n+1, i}^{n}\left(q^{2}\right) \gamma\right.}\left\{\mu+B_{n+1, i}\left(q^{2}\right) \frac{i \sigma\{\mu \alpha}{2 m} q_{\alpha}\right) q^{\mu_{1}} \ldots q^{\mu_{i} \bar{P}^{\mu_{i+1}} \ldots \bar{P}^{\left.\mu_{n}\right\}}}\right. \\
\left.+\bmod (n, 2) C_{n+1,0}\left(q^{2}\right) \frac{1}{m} q^{\left\{\mu_{q} q_{1}\right.} \ldots q^{\mu n\}}\right] u_{N}(p, s)
\end{gathered}
$$

Similarly for $\mathcal{O}_{\Delta q}^{\mu \mu_{1} \ldots \mu_{n}}$ (in terms of $\left.\tilde{A}_{n i}\left(q^{2}\right), \tilde{B}_{n i}\left(q^{2}\right)\right)$ and $\mathcal{O}_{\delta q}^{\mu \mu_{1} \ldots \mu_{n}}$ (in terms of $A_{n i}^{T}, B_{n i}^{T}, C_{n i}^{T}, D_{n i}^{T}$).

- $n=1$: ordinary nucleon form factors

where
$\xrightarrow{\boldsymbol{i} . .:=} \bar{\psi} \gamma_{\mu} \psi \Longrightarrow \gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{\sigma_{\mu \nu} q^{\nu}}{2 m} F_{2}\left(q^{2}\right)$ Dirac F_{1} and Pauli F_{2} are related to the electric and magnetic Sachs form factors:
- $j_{\mu}=\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x) \Longrightarrow i\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] \frac{\tau^{a}}{2}$
- $A_{n 0}(0) \tilde{A}_{n 0}(0) A^{T}(0)$ are moments of narton distributions, e.g. $\langle x\rangle_{G}=A_{20}(0)$ and $\langle x\rangle_{\Delta q}=\tilde{A}_{20}(0)$ are the spin independent and helicity distributions
\rightarrow can evaluate quark spin, $J_{q}=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]=\frac{1}{2} \Delta \Sigma_{q}+L_{q}, \Delta \Sigma_{q}=\tilde{A}_{10}$
\rightarrow nucleon spin sum rule: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma_{q}+L_{q}+J_{g}, \quad$ momentum sum rule: $\langle x\rangle_{g}=1-A_{20}(0)$
\rightarrow Vanishing of anomalous gravitomagnetic moment

Nucleon generalized form factors

Decomposition of matrix elements into generalized form factors:

$$
\begin{gathered}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{q}^{\mu \mu_{1} \ldots \mu n_{n}}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\sum_{i=0,2, \ldots\left(A _ { n + 1 , i } ^ { n } (q ^ { 2 }) \gamma \left\{\mu+B_{n+1, i}\left(q^{2}\right) \frac{i \sigma\{\mu \alpha}{2 m} q_{\alpha}\right.\right.}^{2}\right) q^{\mu_{1}} \ldots q^{\left.\mu_{i} \bar{P}^{\mu_{i+1}} \ldots \bar{P}^{\mu}\right\}} \\
\left.+\bmod (n, 2) C_{n+1,0}\left(q^{2}\right) \frac{1}{m} q^{\{\mu} q^{\mu_{1}} \ldots q^{\mu n\}}\right] u_{N}(p, s)
\end{gathered}
$$

Similarly for $\mathcal{O}_{\Delta q}^{\mu \mu_{1} \ldots \mu_{n}}$ (in terms of $\left.\tilde{A}_{n i}\left(q^{2}\right), \tilde{B}_{n i}\left(q^{2}\right)\right)$ and $\mathcal{O}_{\delta q}^{\mu \mu_{1} \ldots \mu_{n}}$ (in terms of $A_{n i}^{T}, B_{n i}^{T}, C_{n i}^{T}, D_{n i}^{T}$). Special cases:

- $n=1$: ordinary nucleon form factors

$$
\begin{aligned}
A_{10}\left(q^{2}\right)=F_{1}\left(q^{2}\right) & =\int_{-1}^{1} d x H\left(x, \xi, q^{2}\right), & B_{10}\left(q^{2}\right)=F_{2}\left(q^{2}\right)=\int_{-1}^{1} d x E\left(x, \xi, q^{2}\right) \\
\tilde{A}_{10}\left(q^{2}\right)=G_{A}\left(q^{2}\right) & =\int_{-1}^{1} d x \tilde{H}\left(x, \xi, q^{2}\right), & \tilde{B}_{10}\left(q^{2}\right)=G_{p}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{E}\left(x, \xi, q^{2}\right)
\end{aligned}
$$

where

- $j_{\mu}=\bar{\psi} \gamma_{\mu} \psi \Longrightarrow \gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m} F_{2}\left(q^{2}\right)$

The Dirac F_{1} and Pauli F_{2} are related to the electric and magnetic Sachs form factors:

$$
\begin{aligned}
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)-\frac{q^{2}}{(2 m)^{2}} F_{2}\left(q^{2}\right), \quad G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right) \\
& \\
& j_{\mu}=\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x) \Longrightarrow i\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] \frac{\tau^{a}}{2}
\end{aligned}
$$

- $A_{n 0}(0), \tilde{A}_{n 0}(0), A_{n 0}^{T}(0)$ are moments of parton distributions, e.g. $\langle x\rangle_{q}=A_{20}(0)$ and $\langle x\rangle_{\triangle q}=\tilde{A}_{20}(0)$ are
the spin independent and helicity distributions the spin independent and helicity distributions
\rightarrow can evaluate quark spin,
momentum sum rule: $\langle x\rangle_{g}=1-A_{20}(0)$
\rightarrow nucleon spin sum rule: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma_{q}+L_{q}+J_{g}$,
\rightarrow Vanishing of anomalous gravitomagnetic moment

Nucleon generalized form factors

Decomposition of matrix elements into generalized form factors:

$$
\begin{gathered}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{q}^{\mu \mu_{1} \ldots \mu_{n}}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right)\left[\sum_{i=0,2, \ldots\left(A _ { n + 1 , i } ^ { n } (q ^ { 2 }) \gamma \left\{\mu+B_{n+1, i}\left(q^{2}\right) \frac{i \sigma\{\mu \alpha}{2 m} q_{\alpha}\right.\right.}^{2}\right) q^{\mu_{1}} \ldots q^{\mu_{i} \bar{p}^{\mu_{i+1}} \ldots \bar{p}^{\left.\mu_{n}\right\}}} \\
\quad+\bmod (n, 2) C_{n+1,0}\left(q^{2}\right) \frac{1}{m}\left\{\mu^{\{ } q^{\mu_{1}} \ldots q^{\mu n\}}\right] u_{N}(p, s)
\end{gathered}
$$

Similarly for $\mathcal{O}_{\Delta q}^{\mu \mu_{1} \ldots \mu_{n}}$ (in terms of $\left.\tilde{A}_{n i}\left(q^{2}\right), \tilde{B}_{n i}\left(q^{2}\right)\right)$ and $\mathcal{O}_{\delta q}^{\mu \mu_{1} \ldots \mu_{n}}$ (in terms of $A_{n i}^{\top}, B_{n i}^{\top}, C_{n i}^{\top}, D_{n i}^{\top}$). Special cases:

- $n=1$: ordinary nucleon form factors

$$
\begin{array}{cll}
A_{10}\left(q^{2}\right)=F_{1}\left(q^{2}\right)=\int_{-1}^{1} d x H\left(x, \xi, q^{2}\right), & B_{10}\left(q^{2}\right)=F_{2}\left(q^{2}\right)=\int_{-1}^{1} d x E\left(x, \xi, q^{2}\right) \\
\tilde{A}_{10}\left(q^{2}\right)=G_{A}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{H}\left(x, \xi, q^{2}\right), & \tilde{B}_{10}\left(q^{2}\right)=G_{p}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{E}\left(x, \xi, q^{2}\right)
\end{array}
$$

where

- $j_{\mu}=\bar{\psi} \gamma_{\mu} \psi \Longrightarrow \gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m} F_{2}\left(q^{2}\right)$

The Dirac F_{1} and Pauli F_{2} are related to the electric and magnetic Sachs form factors:

$$
\begin{aligned}
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)-\frac{q^{2}}{(2 m)^{2}} F_{2}\left(q^{2}\right), \quad G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right) \\
& - \\
& j_{\mu}=\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x) \Longrightarrow i\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] \frac{\tau^{a}}{2}
\end{aligned}
$$

- $A_{n 0}(0), \tilde{A}_{n 0}(0), A_{00}^{T}(0)$ are moments of parton distributions, e.g. $\langle x\rangle_{q}=A_{20}(0)$ and $\langle x\rangle_{\Delta q}=\tilde{A}_{20}(0)$ are the spin independent and helicity distributions
\rightarrow can evaluate quark spin, $J_{q}=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]=\frac{1}{2} \Delta \Sigma_{q}+L_{q}, \Delta \Sigma_{q}=\tilde{A}_{10}$
\rightarrow nucleon spin sum rule: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma_{q}+L_{q}+J_{g}, \quad$ momentum sum rule: $\langle x\rangle_{g}=1-A_{20}(0)$
\rightarrow Vanishing of anomalous gravitomagnetic moment

Lattice QCD evaluation

Evaluation of two-point and three-point functions

$$
\begin{aligned}
G(\vec{q}, t) & =\sum_{\vec{x}_{f}} e^{-i \vec{x}_{f} \cdot \vec{q}^{4}} \Gamma_{\beta \alpha}^{4}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \bar{J}_{\beta}(0)\right\rangle \\
G^{\mu \nu}(\Gamma, \vec{q}, t) & =\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{a}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}^{\mu \nu}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle
\end{aligned}
$$

Sequential inversion "through the sink" \rightarrow fix sink-source separation $t_{f}-t_{i}$, final momentum $\vec{p}_{f}=0$, Γ Apply smearing techniques to improve ground state dominance in three-point correlators
Take ratios: Leading time dependence cancels like in determination of hadron masses \rightarrow Talk by M. Peardon

$$
a E_{\mathrm{eff}}(\vec{q}, t)=\ln [G(\vec{q}, t) / G(\vec{q}, t+a)]
$$

$\rightarrow a E(\vec{q}) \xrightarrow{\vec{q}=0} a m$

Lattice QCD evaluation

Evaluation of two-point and three-point functions

$$
\begin{aligned}
G(\vec{q}, t) & =\sum_{\vec{x}_{f}} e^{-i \vec{x}_{f} \cdot \vec{a}} \Gamma_{\beta \alpha}^{4}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \bar{J}_{\beta}(0)\right\rangle \\
G^{\mu \nu}(\Gamma, \vec{q}, t) & =\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{a}^{\prime}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}^{\mu \nu}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle
\end{aligned}
$$

Sequential inversion "through the sink" \rightarrow fix sink-source separation $t_{f}-t_{i}$, final momentum $\vec{p}_{f}=0$, Γ Apply smearing techniques to improve ground state dominance in three-point correlators
Take ratios: Leading time dependence cancels like in determination of hadron masses \rightarrow Talk by M. Peardon

$$
\begin{aligned}
& \quad a E_{\text {eff }}(\vec{q}, t)=\ln [G(\vec{q}, t) / G(\vec{q}, t+a)] \\
& \rightarrow \\
& a E(\vec{q}) \stackrel{\vec{q}=0}{\rightarrow} a m \\
& R^{\mu \nu}(\Gamma, \vec{q}, t)=\frac{G^{\mu \nu}(\Gamma, \vec{q}, t)}{G\left(\overrightarrow{0}, t_{f}\right)} \sqrt{\left.\frac{G\left(\overrightarrow{p_{i}}, t_{f}-t\right) G(\overrightarrow{0}, t) G\left(\overrightarrow{0}, t_{f}\right)}{G\left(\overrightarrow{0}, t_{f}-t\right) G(\vec{p} ;}, t\right) G\left(\vec{p}_{f}, t_{f}\right)} \\
& \rightarrow
\end{aligned}
$$

For nucleon form factors: $t_{f}-t_{i}>1 \mathrm{fm}$ However, this might be operator dependent

Study of excited state contributions

$N_{F}=2+1+1$ with $m_{\pi} \sim 380 \mathrm{MeV}$ and $a=0.08 \mathrm{fm}$

Vary source- sink separation:

S. Dinter, C.A., M. Constantinou, V. Drach, K. Jansen and D. Renner, arXiv: 1108.1076

Study of excited state contributions

$N_{F}=2+1+1$ with $m_{\pi} \sim 380 \mathrm{MeV}$ and $a=0.08 \mathrm{fm}$

Vary source- sink separation:

\Longrightarrow Excited contributions are operator dependent
g_{A} unaffected, $\langle x\rangle_{u-d} 10 \%$ lower
S. Dinter, C.A., M. Constantinou, V. Drach, K. Jansen and D. Renner, arXiv: 1108.1076

Non-perturbative renormalization

Connect lattice results to measurements: $\mathcal{O}_{\overline{\mathrm{MS}}}(\mu)=Z(\mu, a) \mathcal{O}_{\text {latt }}(a)$
Most collaborations evaluate $Z(\mu, a)$ non-perturbatively
ETMC: Rl'-MOM renormalization scheme as in e.g. M. Göckeler et al., Nucl. Phys. B544,699

- Fix to Landau gauge and compute:
$S^{u}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle u(x) \bar{u}(y)\rangle$
$G(p)=\frac{a^{12}}{V} \sum_{x, y, z, z^{\prime}} e^{-i p(x-y)}\left\langle u(x) \bar{u}(z) \mathcal{J}\left(z, z^{\prime}\right) d\left(z^{\prime}\right) \bar{d}(y)\right\rangle$
\rightarrow Amputated vertex functions: $\Gamma(p)=\left(S^{u}(p)\right)^{-1} G(p)\left(S^{d}(p)\right)^{-1}$
- Renormalization functions: Z_{q} and $Z_{\mathcal{O}}$:
$Z_{q}=\left.\frac{1}{12} \operatorname{Tr}\left[\left(S^{L}(p)\right)^{-1} S^{(0)}(p)\right]\right|_{p^{2}=\mu^{2}},\left.\quad Z_{q}^{-1} Z_{\mathcal{O}} \frac{1}{12} \operatorname{Tr}\left[\Gamma^{L}(p)\left(\Gamma^{(0)}(p)\right)^{-1}\right]\right|_{p^{2}=\mu^{2}}$
- Mass independent renormalization scheme \rightarrow need chiral extrapolations

C.A., M. Constantinou, T. Korzec, H. Panagopoulos, Stylianou, arXiv:1201.5025, PRD83 (2011) 014503

Non-perturbative renormalization

Connect lattice results to measurements: $\mathcal{O}_{\overline{\mathrm{MS}}}(\mu)=Z(\mu, a) \mathcal{O}_{\text {latt }}(a)$
Most collaborations evaluate $Z(\mu, a)$ non-perturbatively
ETMC: Rl'-MOM renormalization scheme as in e.g. M. Göckeler et al., Nucl. Phys. B544,699

- Fix to Landau gauge and compute:

$$
\begin{aligned}
& S^{u}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle u(x) \bar{u}(y)\rangle \\
& G(p)=\frac{a^{12}}{V} \sum_{x, y, z, z^{\prime}} e^{-i p(x-y)}\left\langle u(x) \bar{u}(z) \mathcal{J}\left(z, z^{\prime}\right) d\left(z^{\prime}\right) \bar{d}(y)\right\rangle \\
& \rightarrow \text { Amputated vertex functions: } \Gamma(p)=\left(S^{u}(p)\right)^{-1} G(p)\left(S^{d}(p)\right)^{-1}
\end{aligned}
$$

- Renormalization functions: Z_{q} and $Z_{\mathcal{O}}$:

$$
Z_{q}=\left.\frac{1}{12} \operatorname{Tr}\left[\left(S^{L}(p)\right)^{-1} S^{(0)}(p)\right]\right|_{p^{2}=\mu^{2}},\left.\quad Z_{q}^{-1} Z_{\mathcal{O}} \frac{1}{12} \operatorname{Tr}\left[\Gamma^{L}(p)\left(\Gamma^{(0)}(p)\right)^{-1}\right]\right|_{p^{2}=\mu^{2}}
$$

- Mass independent renormalization scheme \rightarrow need chiral extrapolations
- Subtract $\mathcal{O}\left(a^{2}\right)$ perturbatively.

C.A., M. Constantinou, T. Korzec, H. Panagopoulos, Stylianou, arXiv:1201.5025, PRD83 (2011) 014503

Disconnected contributions

- Approximate using stochastic techniques
- Loops with a scalar inversion are much easier to compute
- Disconnected loops contributing to nucleon form factors show slow convergence
- The truncated solver method is best suited, G. Bali, S. Collins, A. Schafer Comput.Phys.Commun. 181 (2010) 1570

C.A., K. Hadjiyiannakou, G. Koutsou, A. 'O Cais, A. Strelchenko, arXiv:1108.2473: Comparison of stochastic methods to the exact evaluation enabled using GPUs; $N_{f}=2$ Wilson fermions (SESAM Collaboration)

Results on nucleon parton distributions

Transverse quark distributions:

$$
\begin{aligned}
& q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} H\left(x, \xi=0,-\Delta_{\perp}^{2}\right) \\
& \int_{-1}^{1} d x x^{n-1} q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} A_{n 0}^{q}\left(-\Delta_{\perp}^{2}\right) \\
& q\left(x \rightarrow 1, \mathbf{b}_{\perp}\right) \propto \delta^{2}\left(\mathbf{b}_{\perp}\right) \\
& \rightarrow \text { the slope of } A_{n 0} \text { decrease as } n \text { increases }
\end{aligned}
$$

Results on nucleon parton distributions

Transverse quark distributions:

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} H\left(x, \xi=0,-\Delta_{\perp}^{2}\right) \\
\int_{-1}^{1} d x x^{n-1} q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} A_{n 0}^{q}\left(-\Delta_{\perp}^{2}\right) \\
q\left(x \rightarrow 1, \mathbf{b}_{\perp}\right) & \propto \delta^{2}\left(\mathbf{b}_{\perp}\right)
\end{aligned}
$$

\rightarrow the slope of $A_{n 0}$ decrease as n increases

Pion: D. Brömmel et al. (QCDSF), hep-lat/0509133, PRL 101 (2008) 1229001

Results on nucleon parton distributions

Transverse quark distributions:

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} H\left(x, \xi=0,-\Delta_{\perp}^{2}\right) \\
\int_{-1}^{1} d x x^{n-1} q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} A_{n 0}^{q}\left(-\Delta_{\perp}^{2}\right) \\
q\left(x \rightarrow 1, \mathbf{b}_{\perp}\right) & \propto \delta^{2}\left(\mathbf{b}_{\perp}\right)
\end{aligned}
$$

\rightarrow the slope of $A_{n 0}$ decrease as n increases

Nucleon: J. D. Bratt et al. (LHPC), arXiv:1001:3620

Nucleon momentum fraction

Momentum fraction $\langle x\rangle_{u-d}=A_{20}^{\text {isovector }}$

Physical point: $\langle x\rangle_{u-d}$ from S. Alekhin et al. arXiv:0908.2766
$\mathrm{HB} \chi$ PT for $\langle x\rangle_{u-d}$ and $\langle x\rangle_{\Delta u-\Delta d}$, D. Arndt, M. Savage, NPA 697, 429 (2002); W. Detmold, W Melnitchouk, A. Thomas, PRD 66, 054501 (2002)

Fit ETMC results with $\lambda^{2}=1 \mathrm{GeV}^{2}$

$$
\langle x\rangle_{u-d}=C\left[1-\frac{3 g_{A}^{2}+1}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \ln \frac{m_{\pi}^{2}}{\lambda^{2}}\right]+\frac{c_{8}\left(\lambda^{2}\right) m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \quad\langle x\rangle_{\Delta u-\Delta d}=\tilde{C}\left[1-\frac{2 g_{A}^{2}+1}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \ln \frac{m_{\pi}^{2}}{\lambda^{2}}\right]+\frac{\tilde{c_{8}}\left(\lambda^{2}\right) m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}
$$

Nucleon spin

Spin sum: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{q}+J_{G}$

Non-relativistic quark model:
If $\Delta \Sigma_{u, d}=1 \Rightarrow L_{q}=0$ and $J_{G}=0$, as well as $\Delta s=0$, where Δq contains both the spin of q and \bar{q}.

- Integrate over the range of data:
- COMPASS data for $x \geq 0.004$, M. G. Alekseev et al. NPL B 693, 227 (2010)
- HERMES data $x \geq 0.02$, A. Airapetian et al. PRD 75, 012007 (2007)
$\Longrightarrow \Delta s \sim 0$.
- Global analyses give $\Delta s \sim-0.12$, i.e. a large negative $\Delta s(x)$ at very small x, E. Leader, A. V. Sidorov and D. B. Stamenov, PRD 82, 114018 (2010); J. Rojo et al. (NNPDF), PoS DIS 2010, 244 (2010); D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, PRD 80, 034030 (2009).
- Gluon helicity distribution from both COMPASS and STAR experiments is found to be close to zero, M.Stolarski(COMPASS),Nucl.Phys.Proc.Suppl.207-208,53(2010) ;P.Djawotho (STAR), J. Phys. Conf. Ser. 295, 012061 (2011)

Nucleon spin

Spin sum: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{q}+J_{G}$

Non-relativistic quark model:
If $\Delta \Sigma_{u, d}=1 \Rightarrow L_{q}=0$ and $J_{G}=0$, as well as $\Delta s=0$, where Δq contains both the spin of q and \bar{q}.

- Integrate over the range of data:
- COMPASS data for $x \geq 0.004$, M. G. Alekseev et al. NPL B 693, 227 (2010)
- HERMES data $x \geq 0.02$, A. Airapetian et al. PRD 75, 012007 (2007) $\Longrightarrow \Delta s \sim 0$.
- Global analyses give $\Delta s \sim-0.12$, i.e. a large negative $\Delta s(x)$ at very small x, E. Leader, A. V. Sidorov and D. B. Stamenov, PRD 82, 114018 (2010); J. Rojo et al. (NNPDF), PoS DIS 2010, 244 (2010); D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, PRD 80, 034030 (2009).
- Gluon helicity distribution from both COMPASS and STAR experiments is found to be close to zero, M.Stolarski(COMPASS),Nucl.Phys.Proc.Suppl.207-208,53(2010) ;P.Djawotho (STAR), J. Phys. Conf. Ser. 295, 012061 (2011)
Lattice QCD: Need both connected and disconnected contributions to evaluate contributions to spin
Bali et al., arXiv:1112.3354: $\Delta u+\Delta d+\Delta s=0.45$ (4)(9) with $\Delta s=-0.020(10)(4)$ at $\mu=\sqrt{7.4} \mathrm{GeV}$
\Longrightarrow Small strangeness (disconnected) contribution to the nucleon spin

Lattice results on the nucleon spin

$J_{q}=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]=\frac{1}{2} \Delta \Sigma_{q}+L_{q}$
$\Delta \Sigma_{q}=\tilde{A}_{10}$
Only connected contribution
Results using $N_{F}=2$ TMF for $270 \mathrm{MeV}<m_{\pi}<500 \mathrm{MeV}$, C. Alexandrou et al. (ETMC), arXiv:1104.1600 In agreement with A. Sternbeck et al. (QCDSF) arXiv:1203.6579
In qualitative agreement with J. D. Bratt et al. (LHPC), PRD82 (2010) 094502

Lattice results on the nucleon spin

$J_{q}=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]=\frac{1}{2} \Delta \Sigma_{q}+L_{q}$
$\Delta \Sigma_{q}=\tilde{A}_{10}$
Only connected contribution
Results using $N_{F}=2$ TMF for $270 \mathrm{MeV}<m_{\pi}<500 \mathrm{MeV}$, C. Alexandrou et al. (ETMC), arXiv:1104.1600 In agreement with A. Sternbeck et al. (QCDSF) arXiv:1203.6579
In qualitative agreement with J. D. Bratt et al. (LHPC), PRD82 (2010) 094502

\Longrightarrow Total spin for u-quarks $J^{u} \sim 0.25$ and for d-quark $J^{d} \sim 0$

Lattice results on the nucleon spin

$J_{q}=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]=\frac{1}{2} \Delta \Sigma_{q}+L_{q}$
$\Delta \Sigma_{q}=\tilde{A}_{10}$
Only connected contribution
Results using $N_{F}=2 \mathrm{TMF}$ for $270 \mathrm{MeV}<m_{\pi}<500 \mathrm{MeV}$, C. Alexandrou et al. (ETMC), arXiv:1104.1600 In agreement with A. Sternbeck et al. (QCDSF) arXiv:1203.6579
In qualitative agreement with J. D. Bratt et al. (LHPC), PRD82 (2010) 094502

\Longrightarrow Good agreement also for $\Delta \Sigma^{u-d}$ and ΔL^{u-d}

Spin of the Nucleon

- $N_{F}=2+1$ domain wall valence quarks on staggered sea J. D. Bratt et al. (LHPC), PRD82 (2010) 094502

Physical points from HERMES 2007 analysis

Conclusions

- Large scale simulations using the underlying theory of the Strong Interactions have made spectacular progress
\Longrightarrow we now have simulations of the full theory at near physical parameters
- The low-lying hadron spectrum is reproduced
- Nucleon form factors are being computed by a number of collaborations aiming at reproducing the experimental values
- For resonances and such as the Δ lattice QCD provides a prediction for the form factors
- Moments of GPDs are being computed using a number of discretization schemes \rightarrow provide insight into the structure of nucleon

Simulations at physical pion mass are becoming available \Longrightarrow we expect many physical results on key observables

Thank you for your attention

[^0]: C. A., T. Korzec, G. Koutsou, C. Lorcé, J. W. Negele, V. Pascalutsa, A. Tsapalis, M. Vanderhaeghen, NPA825,115 (2009).

