Light Baryon Spectroscopy - Recent Results

R. Beck
HISKP, University Bonn
IWHSS, 16. - 18.April 2012, Lisbon

- Introduction
- Recent Results from ELSA, JLab and MAMI:

$$
\begin{aligned}
& \vec{\gamma} \vec{p} \rightarrow p \pi^{0} \\
& \vec{\gamma} \vec{p} \rightarrow p \eta
\end{aligned}
$$

- Narrow structure

$$
\vec{\gamma} n \rightarrow n \eta
$$

- Summary and Outlook

Introduction

PDG 2010: Status on nucleon resonances

- Energy pattern for the dominant states

Constituent Quark Models
Dynamical Models

- Various nucleon models predict many more states
weak coupling to πN final state insufficient data base

Introduction

talk yesterday by M. Peardon
R. Edwards et al., Phys. Rev. D 84, 074508 (2011)

Exhibits broad features expected of $S U(6) \otimes O(3)$ symmetry
\rightarrow Counting of levels consistent with non-rel. quark model, no parity doubling

Experimental program for N^{*}

Common effort at ELSA, JLab and MAMI,

- Precision data for different final states ($\mathrm{p} \pi^{0}, \mathrm{n} \pi^{+}, \mathrm{p} \eta, \mathrm{K}^{+} \Lambda, \mathrm{p} \pi^{0} \pi^{0} \ldots$)
- Polarization experiments (beam, target and recoil)
"complete data base"
- To constrain PWA \rightarrow unique PWA solution

Problem with a unique PWA solution

$$
\vec{\gamma}+\vec{N} \rightarrow N+\pi
$$

8 well chosen observable have to be measured to determine the production amplitudes (F_{1}, F_{2}, F_{3} and F_{4})

- π - threshold until $\Delta^{+}(1232)$ - region
additional constraints:
(a) s - and p - wave approximation
(b) Fermi- Watson theorem

$$
\begin{aligned}
\gamma+N & \rightarrow N+\pi \\
\pi+N & \rightarrow N+\pi
\end{aligned} \quad \rightarrow \text { same } \mathrm{I}, \mathrm{~J} \text { in the final state }, ~\left(t e r i n g ~ p h a s e ~ \delta_{\mathrm{IJ}}\right.
$$

two observable sufficient for "complete data base"
differential cross section: $\mathrm{d} \sigma / \mathrm{d} \Omega$
beam asymmetry: Σ

- above $\pi \pi$ - threshold

Fermi- Watson theorem not valid any more
More observable needed to get a unique partial wave solution

Partial waves for the $P_{33}(1232)$

- energy dep. (global) fit, Hanstein et al
- energy indep. (local) fit, Hanstein et al
- exp. analysis, Krahn et al, Mainz 1997

Resonance parameter for the $P_{33}(1232)$

e.m. transition moments and E/M ratio at $\mathrm{W}_{\text {res }}=1232 \mathrm{MeV}$

$$
\begin{aligned}
\mu_{N \Delta} & =(3.46 \pm 0.03) \mu_{N} \\
Q_{N \Delta} & =-(0.0846 \pm 0.0033) \mathrm{fm}^{2} \\
R_{E M} & =-\left(2.5 \pm 0.1_{\text {stat. }} \pm 0.2_{\text {syst. }}\right) \%
\end{aligned}
$$

pole position and residues at $\mathrm{W}_{\text {pole }}=\mathrm{M}_{\mathrm{R}}-\mathrm{i} / 2 \Gamma_{\mathrm{R}}$

$$
\begin{aligned}
M_{R} & =1212 \pm 1 \mathrm{MeV} \\
\Gamma_{R} & =99 \pm 2 \mathrm{MeV} \\
r(M 1) & =21.16 \cdot e^{-i 27.5^{0}} \\
r(E 2) & =1.23 \cdot e^{-i 154.7^{0}} \\
R_{\Delta}=\frac{r(E 2)}{r(M 1)} & =-0.035-0.046 i
\end{aligned}
$$

O. Hanstein, D. Drechsel, and L. Tiator Phys. Lett. B 385, 45 (1996)
R.B. and H.P. Krahn Phys. Rev. Lett. 78, 606 (1997)
R.B. and H.P. Krahn Phys. Rev. C61, 035204 (2000)

Problem with a unique PWA solution

$$
\vec{\gamma}+\vec{N} \rightarrow N+\pi
$$

8 well chosen observable have to be measured to determine the production amplitudes (F_{1}, F_{2}, F_{3} and F_{4})

- π - threshold until $\Delta^{+}(1232)$ - region
additional constraints:
(a) s - and p - wave approximation
(b) Fermi- Watson theorem

$$
\begin{aligned}
\gamma+N & \rightarrow N+\pi \\
\pi+N & \rightarrow N+\pi
\end{aligned} \quad \rightarrow \text { same } \mathrm{I}, \mathrm{~J} \text { in the final state }, ~\left(t e r i n g ~ p h a s e ~ \delta_{\mathrm{IJ}}\right.
$$

two observable sufficient for "complete data base"
differential cross section: $\mathrm{d} \sigma / \mathrm{d} \Omega$
beam asymmetry: Σ

- above $\pi \pi$ - threshold

Fermi- Watson theorem not valid any more
More observable needed to get a unique partial wave solution

Problem with a unique PWA solution

$$
\vec{\gamma}+p \rightarrow p+\eta
$$

V. Crede, O. Bartolomy et al., PRL 94 (2005) 012004, EPJ A33 (2007) 133

Photon helicity couplings: $A_{1 / 2}$ und $A_{3 / 2}$
$S_{11}(1535): A_{1 / 2}\left(S_{11}(1535)\right)$ only
$D_{13}(1520): A_{1 / 2}\left(D_{13}(1520)\right)$ and $A_{3 / 2}\left(D_{13}(1520)\right)$
$P_{13}(1720): A_{1 / 2}\left(P_{13}(1720)\right)$ and $A_{3 / 2}\left(P_{13}(1720)\right)$

BnGa partial wave analysis: strong P13(1720) contribution

Total cross section:

$$
\overline{\sigma_{\text {tot }} \sim\left|A_{1 / 2}\left(S_{11}\right)\right|^{2}+\left|A_{1 / 2}\left(P_{13}\right)\right|^{2}+\left|A_{3 / 2}\left(P_{13}\right)\right|^{2}+\ldots}
$$

Problem with a unique PWA solution

Beam asymmetry: Σ
$\vec{\gamma}+p \rightarrow p+\eta$

Higher sensitivity because of interference between different resonance contributions
$\Sigma \sim A_{1 / 2}\left(S_{11}\right) * A_{1 / 2}\left(P_{13}\right)+\ldots$.

BnGa partial wave analysis: strong P13(1720) contribution

MAID partial wave analysis: D15(1675) and P11(1710) contribution

More observable needed to get a unique partial wave solution
D. Elsner et al., EPJ A33 (2007) 147

Observables in Meson Photoproduction

Photon polarization		Target polarization	Recoil nucleon polarization	Target and recoil polarizations
		X Y \quad Z (beam)	X' Y' ${ }^{\prime}$	$\begin{array}{llll} X^{\prime} & X^{\prime} & Z^{\prime} & Z^{\prime} \\ X & Z & X & \end{array}$
unpolarized linear circular	σ Σ -	$\begin{array}{\|lcc\|} \hline- & \mathrm{T} & - \\ \mathrm{H} & (-P) & \mathrm{G} \\ \mathrm{~F} & - & \mathrm{E} \end{array}$	$\begin{array}{ccc} - & \mathbf{P} & - \\ O_{x} & (-T) & O_{z} \\ C_{x} & - & C_{z} \end{array}$	$\begin{array}{\|llcc} \hline \mathrm{T}_{\mathrm{x}} & \mathrm{~L}_{\mathrm{x}} & \mathrm{~T}_{\mathrm{z}} & \mathrm{~L}_{\mathrm{z}} \\ \left(-\mathrm{L}_{\mathrm{z}}\right) & \left(\mathrm{T}_{\mathrm{z}}\right) & \left(\mathrm{L}_{\mathrm{x}}\right) & \left(-\mathrm{T}_{\mathrm{x}}\right) \end{array}$

data only for:

Differential cross section: σ
Beam asymmetry: $\quad \Sigma$
Double polarization:
E
Sensitive to: $\operatorname{Re}\left(P_{1} \cdot P_{2}\right)$
data needed for:
Target asymmetry: \mathbf{T}
Recoil polarization: \mathbf{P}
Double polarization:
G
Sensitive to: $\operatorname{Im}\left(P_{1} \cdot P_{2}\right)$

Electron Stretcher Accelerator (ELSA)

Experiments at ELSA

- Crystal Barrel Set-Up
- BGO-OD Set-Up

Crystal Barrel Set Up at ELSA

Crystal Barrel Set Up at ELSA

- Crystal Barrel detector 1230 Csl crystals
- Inner-detector cylinder of 513 scintillating fibers
- forward detector (FWPlug) 90 Csl crystals with PM's, $12^{0}-30^{0}$
- forward detector (MiniTAPS) $216 \mathrm{BaF}_{2}, 1^{0}-12^{0}$

Close to 4π coverage

Polarized Photons

Linearly polarized photons:

- coherent bremsstrahlung
- diamond radiator

Circularly polarized photons:

- Iongitudinally polarized electrons - helicity transfer to photon

high polarization at low photon energies

Circularly polarized photons

high polarization at high photon energies

Polarized Target

„Iongitudinally polarized Target"

„Frozen Spin Target"

Horizontal cryostat with integrated solenoid to freeze up the spin

Target: Butanol $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)$
Polarization: DNP at high B-field (2.5 T) "freeze" up the spin (0.4 T) relaxation time T~500h

„transversely polarized Target"

Polarized Target at ELSA

Running time over 2500 hours in year 2008 over 2200 hours in year 2009 over 1500 hours in year 2010 over 1800 hours in year 2011

High. polarization

$$
\begin{aligned}
& P_{+}=83.4 \% \\
& P_{-}=-80.9 \%
\end{aligned}
$$

fast build-up
Pol.-time
06h10min

$$
\text { data taking } \longrightarrow
$$

Bonn: H. Dutz, S. Goertz
Bochum: W. Meyer, G. Reicherz

Polarized Target at MAMI

Polarized Target running since beginning 2010

${ }^{3} \mathrm{He}{ }^{4} \mathrm{He}$-Dilution refrigerator (Mainz/JINR Dubna)
Material: Butanol, Polarization > 90\%
~1000 hours relaxation time \& low He consumption

H. Ortega Spina Running with transverse polarized target!

Polarized Target at JLAB

Polarized Target running since beginning 2007

Beam-Target Polarization Observables

photoproduction of pseudoscalar mesons:

- all 3 single polarization observables
- 4 double polarization observables
can be measured with the Crystal Barrel/TAPS experiment

photon pol.		target pol. axis		
		x	y	z
unpolarized	σ	T		
linear	$-\Sigma$	H	$-P$	$-G$
circular		F		$-E$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}(\theta, \phi)=\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}(\theta) & \cdot\left[1-P_{\gamma}^{\mathrm{lin}} \Sigma(\theta) \cos (2 \phi)\right. \\
& +P_{x} \cdot\left(-P_{\gamma}^{\mathrm{lin}} H(\theta) \sin (2 \phi)+P_{\gamma}^{\mathrm{circ}} F(\theta)\right) \\
& +P_{y} \cdot\left(+P_{\gamma}^{\mathrm{lin}} P(\theta) \cos (2 \phi)-T(\theta)\right) \\
& \left.-P_{z} \cdot\left(-P_{\gamma}^{\mathrm{lin}} G(\theta) \sin (2 \phi)+P_{\gamma}^{\mathrm{circ}} E(\theta)\right)\right]
\end{aligned}
$$

Helicity dependent cross section for $p \pi^{0}$

reaction: $\vec{\gamma}+\vec{p} \rightarrow p+\pi^{0}$
circularly polarized photons
longitudinally polarized proton
count rate difference
 acceptance correction

Helicity dependent cross section for $p \pi^{0}$

reaction: $\vec{\gamma}+\vec{p} \rightarrow p+\pi^{0}$
Angular distributions sensitive to interference between resonances

E-Asymmetry for $p \pi^{0}$ (ELSA Results)

SAID: blue line MAID: black line BnGa: red line

PWA predictions fail already in 2. resonance region

Helicity dependent cross section for $p \eta$

reaction: $\vec{\gamma}+\vec{p} \rightarrow p+\eta$
circularly polarized photons longitudinally polarized proton

Problem with a unique PWA solution

Beam asymmetry: Σ
$\vec{\gamma}+p \rightarrow p+\eta$

Higher sensitivity because of interference between different resonance contributions
$\Sigma \sim A_{1 / 2}\left(S_{11}\right) * A_{1 / 2}\left(P_{13}\right)+\ldots$.

BnGa partial wave analysis: strong P13(1720) contribution

MAID partial wave analysis: D15(1675) and P11(1710) contribution

More observable needed to get a unique partial wave solution
D. Elsner et al., EPJ A33 (2007) 147

Helicity dependent cross section for $\mathrm{p} \eta$

reaction: $\vec{\gamma}+\vec{p} \rightarrow p+\eta$
circularly polarized photons longitudinally polarized proton

$\gamma \mathrm{p} \rightarrow \eta \mathrm{p}$

G-Asymmetry for $p \pi^{0}$ (ELSA Results)

linearly polarized beam, longitudinally polarized target:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}(\phi)=\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \cdot 0 \cdot\left(1-P_{\gamma}^{\operatorname{lin}} \sum \cos (2 \phi)+P_{\gamma}^{\operatorname{lin}} P_{z} G \sin (2 \phi)\right)
$$

$$
\vec{\gamma} \overrightarrow{\mathrm{p}} \rightarrow \mathrm{p} \pi^{0}
$$

- Maid - Said
- BnGa
A. Thiel (Bonn)

G-Asymmetry for $p \pi^{0}$ (ELSA Results)

SAID: red dashed MAID: blue dotted BnGa: black line

PWA predictions fail already in 2. resonance region

G-Asymmetry for $p \pi^{0}$ (ELSA Results)

$\mathrm{E}_{0^{+}}$and E_{2-} Multipoles

- $\mathrm{E}_{0_{+}}$multipole
$S_{11}(1535), S_{11}(1650)$ and $S_{31}(1620)$
- $\mathrm{E}_{2 \text { - }}$ multipole
$\mathrm{D}_{13}(1520)$ and $\mathrm{D}_{33}(1700)$

SAID: blue
MAID: black
BnGa: red line

D_{13} partial wave

SAID: blue MAID: black

- $\mathrm{E}_{2 \text { - }}$ multipole contribution from D_{13} and D_{33} partial waves
- $D_{13}(1520)$ - resonance in D_{13} partial wave

BnGa: red line

S_{11} partial wave

SAID: blue MAID: black

- E_{0+} multipole contribution from S_{11} - and S_{31} - partial waves
- $S_{11}(1535)$ - and $S_{11}(1650)$ - resonances in S_{11}-partial wave BnGa: red line

E-Asymmetry for $n \pi^{+}$(JLaB Results)

Preliminary results CLAS at JLAB (M. Dugger)

E-Asymmetry for $n \pi^{+}$(JLaB Results)

Preliminary results CLAS at JLAB (M. Dugger)

Polarization Observables with trans. pol. Target

photon pol.		target pol. axis		
		x	y	z
unpolarized	σ		T	
linear	$-\Sigma$	H	$-P$	$-G$
circular		F		$-E$

Circularly polarized photons
Transversely polarized protons \rightarrow double polarization asymmetry F
Linearly polarized photons
Transversely polarized protons \rightarrow double polarization asymmetry H and P

$$
\begin{gathered}
->\text { in addition Beam asymmetry } \sum_{T} \text { and } \\
\text { Target asymmetry } T
\end{gathered}
$$

F-Asymmetry for $p \pi^{0}$ (MAMI Results)

Preliminary results Crystal Ball at MAMI (H.J. Arends, M. Ostrick)
blue line - MAID-2007
green line - SAID

Beam Asymmetry Σ for $p \pi^{0}$ (ELSA Results)

Note: target material butanol \rightsquigarrow also small contribution from C
[1] O. Bartalini et al, Eur. Phys. J. A 26, 399-419 (2005)

Target Asymmetry T for $p \pi^{0}$ (ELSA Results)

Target Asymmetry T for $p \pi^{0}$ (ELSA Results)

Recoil Polarization P for $p \pi^{0}$ (ELSA Results)

[6] A.S. Bratashevsky et al., Nucl. Phys. B166 (1980)
[7] S. Kato et al., Nucl. Phys. B168 (1980)

Double Polarization Asymmetry H for $p \pi^{0}$

First Interpretation of Asymmetry

Including different angular momenta ℓ :

- with $\ell \leq 1$:

$$
\begin{aligned}
\frac{\hat{G}}{\sin ^{2} \theta_{\pi}} & =\frac{G \cdot \mathcal{I}}{\sin ^{2} \theta_{\pi}}=A \\
& =3 \cdot \operatorname{Im}\left(2 M_{1}^{+*} E_{1}^{+}+M_{1}^{-*} \cdot\left(E_{1}^{+}-M_{1}^{+}\right)\right)
\end{aligned}
$$

- with $\ell \leq 2$:

$$
\frac{\hat{G}}{\sin ^{2} \theta_{\pi}}=A+B \cdot \cos \theta_{\pi}+C \cdot \cos ^{2} \theta_{\pi}
$$

- with $\ell \leq 3$:

$$
\frac{\hat{G}}{\sin ^{2} \theta_{\pi}}=A+B \cdot \cos \theta_{\pi}+C \cdot \cos ^{2} \theta_{\pi}+D \cdot \cos ^{3} \theta_{\pi}+E \cdot \cos ^{4} \theta_{\pi}
$$

First Interpretation of Asymmetry

black line $\mathrm{L}<=2$ Fit and
 red line L <= 3 Fit

$\hat{G} \stackrel{4}{3} E_{-} E_{\gamma}=867 \pm 16 \mathrm{MeV}$

Fit polynomials: - second order - fourth order

First Interpretation of Asymmetry

$\mathrm{L}<=2$ Fit truncated partial wave analysis

Target Asymmetry in $p \eta$

Low energy regime:

$\gamma \boldsymbol{p} \rightarrow \boldsymbol{p} \boldsymbol{\eta}:$
PHOENICS data on T
\Rightarrow isobar models fail to describe the data
\Rightarrow big differences between the different solutions

Target Asymmetry in $\mathrm{p} \eta$

— Tiator et al.:
Model independent fit, assuming S-wave multipoles and their interference with p- and d-waves sufficient ($E_{\gamma} \leq \mathbf{9 0 0} \mathbf{~ M e V}$)
\Rightarrow Energy dependent phase between $S_{11}(1535)$ and $D_{13}(1530)$ needed

\Rightarrow Energy dependent phase \leftrightarrow origin presently not understood

- nature of the \mathbf{S}_{11} (1535) ?
- interpretation of the data ?
\Rightarrow Cross check and improve the precision of the existing data !

Target Asymmetry T for p η (ELSA Results)

Note: preliminary dilution factor
[5] A. Bock et al., Phys. Rev. Lett 81 (1998) 534

Target Asymmetry T for p η (ELSA Results)

\uparrow CB/TAPS + PHOENICS data [5]
Note: preliminary dilution factor
— Maid - Said — BnGa
[5] A. Bock et al., Phys. Rev. Lett 81 (1998) 534

Electromagnetic excitation off the neutron

- importance of measurements off the neutron:
- different resonance contributions
- needed for extraction of iso-spin composition of elm. couplings

Photon energy [GeV]

- complications due to use of nuclear targets (deuteron):
- Fermi motion
- nuclear effects like FSI, re-scattering, coherent contributions

Electromagnetic excitation off the neutron

quasifree η photoprodruction:

$$
\gamma+d \rightarrow n+p+\eta
$$

Narrow structure in n η - final state

$$
\begin{aligned}
W & \approx 1670 \mathrm{MeV} \\
\sigma & \approx 25 \mathrm{MeW}(F W H M)
\end{aligned}
$$

Publication:
I. Jaegle, B. Krusche, ... accepted by EPJA

Comparison Narrow Structure

- narrow structure in excitation function of $\gamma n \rightarrow n \eta$:
- GRAAL:
- Tohoku-LNS: $W \approx 1666 \mathrm{MeV}, ~ г<40 \mathrm{MeV}$
- ELSA:
- MAMI-C:
$W \approx 1685 \mathrm{MeV}, \Gamma<60 \mathrm{MeV}$
$W \approx 1675 \mathrm{MeV}, \Gamma<40 \mathrm{MeV}$
- Effect of photo-excitation of D15(1675) ?
- Coupled channel effect of $\mathrm{S} 11(1535)$ and $\mathrm{P} 11(1710)$?
- Interference effect of S11(1535) and S11(1650) ?
- New narrow state with stronger photo-coupling to the neutron?
-> polarization observables needed !!

Status on Meson Photoproduction Data Base

	σ	Σ	T	P	E	F	G	H	T_{x}	T_{z}	$\mathrm{~L}_{x}$	$\mathrm{~L}_{\mathrm{z}}$	O	O	C	C
z	x	z														

Proton target
Crystal Barrel at ELSA

CLAS at JLAB

Crystal Ball at MAMI

$\mathrm{p} \pi^{0}$	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
$\mathrm{n} \pi^{+}$	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
$\mathrm{p} \eta$	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
$\mathrm{p} \eta^{\prime}$	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
$\mathrm{p} \omega$	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								
$\mathrm{K}^{+} \Lambda$	\checkmark	1	\checkmark													
$\mathrm{K}^{+} \Sigma^{0}$	\checkmark	1	\checkmark													
$\mathrm{K}^{0} \Sigma^{+}$	\checkmark	1									\checkmark	\checkmark				

Nearly complete data base

Complete data base

$\mathrm{p} \pi^{-}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark								
$\mathrm{p} \rho^{-}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark								
$\mathrm{K} \cdot \Sigma^{+}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark								
$\mathrm{K}^{0} \Lambda$	\checkmark															
$\mathrm{~K}^{0} \Sigma^{0}$	\checkmark															
$\mathrm{~K}^{0} \Sigma^{0}$	\checkmark	\checkmark														

Only a few experiments
published, acquired, \nearrow-planned

Summary

- First round of double polarization experiments at ELSA, JLab and MAMI finished
- Preliminary results for the polarization observable T, P, G, E and H

$$
\begin{aligned}
& \vec{\gamma} \vec{p} \rightarrow p \pi^{0} \\
& \vec{\gamma} \vec{p} \rightarrow p \eta
\end{aligned}
$$

- Model independent partial wave analysis has started
- polarization observables are essential
- different final states are essential
- New data will determine nucleon excitation spectrum

World Data Base

reaction: $\vec{\gamma}+\vec{p} \rightarrow p+\pi^{0}$

Beam asymmetry Σ

$\mathrm{E}_{\gamma}(\mathrm{GeV})$

First round of double polarization experiments with CB at ELSA:

Energy range for G: 600-1300 MeV
Energy range for E: 500-2100 MeV

Future plans for CB at ELSA:

Extend energy range to 3 GeV
Transversally polarized target Installed and first data taken

Measurements on the neutron polarized deuteron target

Dilution Factor

- not possible to polarize protons in H_{2} molecules
- target material: butanol \rightsquigarrow unpolarized C and O
- $\vec{\gamma} \overrightarrow{\mathrm{p}} \rightarrow \mathrm{p} \gamma \gamma$
- $\vec{\gamma}_{\mathrm{p}} \rightarrow \mathrm{p} \gamma \gamma$
- in principle: 10 H -Atoms and 32 protons in C and O nuclei \Rightarrow dilution factor $f=\frac{10}{10+32}=0.24$
- reconstruction efficiency different for both reactions
- fermi motion
- final state interaction
\rightsquigarrow need effective dilution factor

Dilution Factor

$860 \mathrm{MeV}<\mathrm{E}_{\gamma}<940 \mathrm{MeV}$

Targetasymmetry in $p \eta$

Observation of a new $\mathrm{D}_{15}(\mathbf{2 0 7 0})$ in the BnGa -analysis of $\gamma p \rightarrow p \eta$ - data fitted together with various other reactions
\Rightarrow Confirmation in polarisation experiments urgently needed!

- BnGa (current, prelim.)
- no D_{15} (2070) (refitted)
= further information to constrain the resonance contributions

Introduction

- 3.2 GeV photon beam at ELSA used to study meson photoproduction
- study the nucleon resonance spectrum

Breit Wigner Resonances

Spectroscopic

$$
X=S\left(l_{\pi}=0\right) ; P\left(l_{\pi}=1\right) ; \ldots
$$

Total Photon Absorption Cross Section

 Notation

Σ-Asymmetry for $p \pi^{0}$ (JLab Results)

M. Dugger (ASU), CLAS g8b run group, to be published

Σ-Asymmetry for $p \pi^{0}$ and $n \pi^{+}$(JLab Results)

M. Dugger (ASU), CLAS g8b run group, to be published

