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I. Introduction

⇒ Meson spectroscopy is in an impasse, despite many newly an-
nounced resonances:

• No systematic search for quark-model states is carried out in en-
ergy regions or for quantum numbers where states are missing.

• Usually only the biggest bumps in the data are considered relevant,
often ignoring other interesting structures.

• Such bumps are invariably interpreted as resonances, without even
considering possible threshold effects or phenomena related to
inelasticities due to competing channels.

• When a new “resonance” does not seem to fit in mainstream
spectroscopy, it becomes right away an exotic candidate, ignoring
possible mass shifts due to meson loops (“unquenching”).

• The PDG seems often biased by mainstream (quenched) quark
models in cataloguing mesonic resonances.

• Such models present a number of very serious problems.



II. Problems with “Standard Model” for meson spectroscopy

⇒ Reference (quenched) quark model (1681 citations in INSPIRE ):
Stephen Godfrey and Nathan Isgur, Phys. Rev. D 32 (1985) 189:

• Typical Coulomb-plus-linear (“funnel”) confing potential, with a
phenomenological running strong coupling αs(r).

• One-gluon exchange gives rise the Coulombic part, as well as the
usual spin-spin and spin-orbit interactions.

• The model uses relativistic kinematics, fixed constituent quark
masses, and phenomenological smearing functions as regulators.

• The model was applied to a very large variety of light, heavy-light,
and heavy qq̄ states, thus almost covering the whole PDG meson
spectrum.

• Most other constituent quark model predict masses that are gen-
erally in reasonable agreement with those of the Godfrey-Isgur
(GI) model, but no other model has been applied so widely.

• Despite the enormous merits of the GI model, several short-
comings have become evident over the years.



GI model, light-quark isoscalar mesons:



Principal problems:

• 0++/3P0: Lowest GI scalar ∼500 MeV heavier than f0(600).

• 0++/3P0: GI ss̄ scalar almost 400 MeV heavier than f0(980).

• 2++/3P2-3F2: PDG listings report 6 likely nn̄ (n = u, d) states
up to ≈ 2.15 GeV, viz. f2(1270), f2(1565), f2(1640), f2(1810),
f2(1910), f2(2150), whereas GI only predict 3.

In probably dominant ss̄ sector, PDG also lists 6 states up to
≈ 2.35 GeV: f2(1430), f ′2(1525), f2(1950), f2(2010), f2(2300),
f2(2340), and GI again only predicts 3.

Note: some PDG f2 states may not be resonances (see D. V.
Bugg, Phys. Rept. 397 (2004) 257), but f2(1565) looks reliable.
Then, PDG: m(2 3P2) − m(1 3P2) ≈ 300 MeV; GI: m(2 3P2) −
m(1 3P2) = 540 MeV.
For unknown reasons, PDG omits f2(1565) from Summary Table.

• 1+−/1P1: PDG nn̄ states: h1(1170), h1(1595).
GI predicts: h1(1220) (1 1P1), h1(1780) (2 1P1).



GI model, light-quark isovector mesons:



Principal problems:

• 0++/3P0: PDG: a0(980), a0(1450).

GI: a0(1090) (1 3P0), a0(1780) (2 3P0).

• 1++/3P1: PDG: a1(1260), a0(1640).

GI: a1(1240 (1 3P1), a1(1820) (2 3P1).

• 2++/3P2: PDG: a2(1320), a2(1700).

GI: a2(1310 (1 3P2), a2(1820) (2 3P2).

• 1−−/3S1-3D1: PDG: ρ(1450), ρ(1570), ρ(1700), ρ(1900).

GI: ρ(1450 (2 3S1), ρ(1660) (1 3D1), ρ(2000) (3 3S1), ρ(2150) (2 3D1).
Note: a recent analytic S-matrix analysis by S. Surovtsev and P.
Bydzovsky, Nucl. Phys. A 807 (2008) 145, arrived at assignments
quite different from both PDG and GI (see Table): ρ(1250),
ρ(1470), ρ(1600), ρ(1900). Also, they conclude that only ρ(1250)
and ρ(1600) are crucial to describe the phase shifts, whereas
ρ(1900) and, to a lesser extent, ρ(1470) improve the inelasticity
(see plot). PDG hides ρ(1250) under the ρ(1450) entry!!
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Table 1

Pole clusters distributed on sheets II, III, and IV for the ρ-like resonances.
√

sr in MeV is given

Three resonances

II III IV

ρ(770) 767.3 ± 0.6 − i(73.3 ± 0.5) 782 ± 10.9 − i(65.6 ± 4.7)

ρ(1250) 1249.9 ± 19.9 − i(152 ± 14.3) 1249 ± 16.9 − i(146.2 ± 14.4)

ρ(1600) 1585 ± 15.3 − i(130.5 ± 22.5) 1578 ± 8.8 − i(72.2 ± 12.5)

Four resonances

II III IV

ρ(770) 766.5 ± 0.6 − i(73.2 ± 0.5) 783.1 ± 10.6 − i(66.2 ± 4.9)

ρ(1250) 1251.4 ± 18.8 − i(152.1 ± 14.2) 1249 ± 16.3 − i(144.3 ± 13.9)

ρ(1600) 1585.2 ± 18.2 − i(141.8 ± 22.3) 1579.6 ± 8.1 − i(73.6 ± 10.3)

ρ(1900) 1871.5 ± 30.5 − i(97.2 ± 30.1) 1894 ± 33.6 − i(95.3 ± 32)

Five resonances

II III IV

ρ(770) 765.8 ± 0.6 − i(73.3 ± 0.4) 778.2 ± 9.1 − i(68.9 ± 3.9)

ρ(1250) 1251.4 ± 11.3 − i(130.9 ± 9.1) 1251 ± 11.1 − i(130.5 ± 9.2)

ρ(1470) 1469.4 ± 10.6 − i(91 ± 12.9) 1465.4 ± 12.1 − i(99.8 ± 15.6)

ρ(1600) 1634 ± 20.1 − i(144.7 ± 23.8) 1592.9 ± 7.9 − i(73.7 ± 11.7)

ρ(1900) 1882.8 ± 24.8 − i(112.4 ± 25.2) 1893 ± 21.9 − i(93.4 ± 19.9)

Table 2

Calculated masses and total widths of the ρ-states (all in MeV)

mres Γtot

ρ(770) 769.3 ± 0.6 146.6 ± 0.9

ρ(1250) 1257.8 ± 11.1 261 ± 18.3

ρ(1470) 1468.8 ± 12.1 199.6 ± 31.2

ρ(1600) 1594.6 ± 8 147.4 ± 23.4

ρ(1900) 1895.3 ± 21.9 186.8 ± 39.8

The ρ(1700) resonance has been observed to have the branching ratio to the 4π (large), ρ2π

(dominant), and ηρ0 (seen) channels.

To include explicitly an influence of some selected channels and to obtain information about

couplings with these channels from the analysis of the ππ -scattering data, we used five-channel

Breit–Wigner forms in constructing the Jost matrix determinant d(k1, . . . , k5). The resonance

poles and zeros in the S-matrix are generated utilizing the Le Couteur–Newton relation

Sres =
d(−k1, . . . , k5)

d(k1, . . . , k5)
, (6)

where k1, k2, k3, k4 and k5 are the momenta of ππ , π+π−2π0, 2π+2π−, η2π , and ωπ0 chan-

nels, respectively. For the c.m. momenta of two-particle channels, we used the equation

ki =
1

2

√

[s − (m1 + m2)2][s − (m1 − m2)2]
s

, (7)

the multi-particle states being considered as the quasi-two-particle ones. The d-function is taken

as d = dresdbg where dres describes contributions of resonances and dbg the background.
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Fig. 2. The phase shift of amplitude, Fig. 2a, and module of the S-matrix element, Fig. 2b, of the P -wave ππ -scattering.

The results of 3-resonance (dashed), 4-resonance (dash-dotted), and 5-resonance (solid) descriptions are shown. The data

are from Refs. [17] (circle), [18] (square), and [19] (plus).

that the resonance ρ(1900) is desired and that the ρ(1450) might be also included improving

slightly the description (at all events, its existence does not contradict to the data).

Masses and widths of the obtained ρ-states can be calculated from the pole positions on

sheet II for resonances of type (a) and on sheet IV for resonances of type (b). The calculated

values of the masses and total widths are given in Table 2 where we assume that the resonance

part of the amplitude reads as

T res
=

√
sΓel

m2
res − s − i

√
sΓtot

. (5)

3. The Breit–Wigner analysis of P -wave ππ scattering

In various works [1], it was shown that the ρ-like resonances obtained in the previous section

have also other considerable decay channels in addition to those considered explicitly above.

It was observed that the ρ(1450) and/or a possible ρ(1250) can also decay to the 4π (seen),

φπ (< 1%), and ηρ0 (< 4%) channels, where the fraction Γi/Γ [1] is given in the parenthesis.



GI model, strange mesons:



Principal problems:

• 0−/1S0: PDG: K (1460), K (1830).

GI: K (1450) (2 1S0), K (2020 (3 1S0).

• 0+/3P0: PDG: K ∗0 (800), K ∗0 (1430), K ∗0 (1950).

GI: K ∗0 (1240) (1 3P1), K ∗0 (1890) (2 3P1)

.

• 1−/3S1-3D1: PDG: K ∗(1410), K ∗(1680).

GI: K ∗(1580) (2 3S1), K ∗(1780) (1 3D1).

• 1+/3P1-1P1: PDG: K1(1270), K1(1400), K1(1650).

GI: K1(1340) (1 1P1), K1(1380) (1 3P1), K1(1900) (2 1P1),
K1(1930) (2 3P1).

• 2−/1D2-3D2: PDG: K2(1580), K2(1770), K2(1820), K2(2250).

GI: K2(1780) (1 1D2), K2(1810) (1 3D2), K2(2230) (2 1D2),
K2(2260) (2 3D2).



GI model, charmonia:



2009 D∗D̄∗ BABAR data on vector charmonium:
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Our interpretation (EvB & GR, Chin. Phys. C 35 (2011) 1):
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GI model, charmed mesons:



GI model, bottomonia:



III. Resonance-Spectrum Expansion

(EvB & GR, Annals Phys. 324 (2009) 1620)

⇒ Building blocks of (non-exotic) RSE are:

V =

M

M

M

M

qq̄

V ΩV =

M

M

M

M

qq̄ qq̄

• V is the effective two-meson potential;
• Ω is the two-meson loop function;
• the blobs are the 3P0 vertex functions, modelled by a spherical δ

shell in r space, i.e., a spherical Bessel function in p space;
• the wiggly lines stand for s-channel exchanges of infinite towers

of qq̄ states, i.e., a kind of Regge propagators.



⇒For N meson-meson channels and several qq̄ channels:

V
(Li ,Lj )
ij (pi , p

′
j ; E ) = λ2r0 j iLi

(pi r0) j jLj
(p′j r0)

Nqq̄∑
α=1

∞∑
n=0

g
(α)
i (n)g

(α)
j (n)

E − E
(α)
n

≡ Rij(E ) j iLi
(pi r0) j jLj

(p′j r0) .

⇒ The closed-form off-energy-shell T -matrix then reads

T
(Li ,Lj )
ij (pi , p

′
j ; E ) =

−2λ2r0

√
µipiµ

′
jp
′
j j iLi

(pi r0)
N∑

m=1

Rim(E )
{

[11− ΩR]−1
}
mj

j jLj
(p′j r0) ,

Ω = −2iλ2r0 diag
(
jnLn

(knr0)h
(1)n
Ln

(knr0)
)
.

⇒The corresponding unitary and symmetric S-matrix is given by

S
(Li ,Lj )
ij (ki , k

′
j ; E ) = δij + 2iT

(Li ,Lj )
ij (ki , k

′
j ; E ) .



Production amplitudes (EvB & GR, Annals Phys. 323 (2008) 1215):

Author's personal copy

broader structure, namely the f0ð600Þ, and is furthermore not very distant from a broad

resonance around 1.35 GeV, viz. the f0ð1370Þ [15].
It is our understanding that mesonic resonances, like the f0ð600Þ and the f0ð980Þ, form

an integral part of the whole meson family. Therefore, we have developed a model for all

q�q phenomena, including those involving charm and bottom. Here, we wish to develop a

new tool for data analysis, which is an amplitude for the description of final-state interac-

tions in two-meson subsystems emerging in decay processes involving other particles. This

production amplitude is based on the two-meson scattering amplitude given in Eq. (5).

For the description of the final-state interactions of meson pairs in production pro-

cesses, it is common practice to make the spectator assumption, according to which the

other emerging hadrons do not interact strongly with the pair. Evidently, this is an

approximation, which is justified by the observation that in most production processes res-

onances involving the third (or fourth, . . .) hadron are much higher in mass than the ener-

gies considered for the pair. Here, we moreover assume that the meson pair is generated

from an initially produced q�q pair. Our amplitude for the production of a meson pair,

including all higher-order contributions from final-state interactions, is depicted in

Fig. 3. Also using expression (5) for the scattering amplitude, we are led to define for

the production amplitude

aða ! iÞ ¼ hi;~pijð1þ TGÞV tjðq�qÞa;Ei

¼ hi;~pijV tjðq�qÞa;Ei þ
X

m

Z

d3kmhi;~pijT jm;~kmiGð~kmÞhm;~kmjV tjðq�qÞa;Ei

¼ ffiffiffi

p
p

X

‘;m

ð�iÞ‘j‘ðpir0ÞY ð‘Þ
m ðp̂iÞQðaÞ

‘q�q
ðEÞ

� g
ai � 2i 2

X

m

l
m
p
m
j‘ðpmr0Þh

ð1Þ
‘ ðp

m
r0Þgam

A
ð‘Þ
im ðEÞ

D
ð‘ÞðEÞ

( )

: ð15Þ

Here, Q
ðaÞ
‘q�q

represents the overlap with the initial q�q distribution, having quantum numbers

a and relative interquark angular momentum ‘q�q. Notice that the latter quantum number is

related—though unequal—to the relative two-meson angular momentum ‘, because of to-

tal-angular-momentum and parity conservation. Below, we shall discuss the properties of

production amplitude (15) for pairs of interacting mesons.

4.1. P i ¼
P

m
cmT mi?

The result (15) agrees to some extent with the expression proposed in Refs. [27,28]. Like

here, the authors of Ref. [28] based their ansatz on the OZI rule [3] and the spectator pic-

ture, so as to find that the production amplitude can be written as a linear combination of

Fig. 3. Graphical representation of the RSE production amplitude. The transition q�q ! MM , denoted by V t in

the text, is here represented by v; the resulting effective MM interaction is denoted by V.
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g
ai � 2i 2

X

m

l
m
p
m
j‘ðpmr0Þh

ð1Þ
‘ ðp

m
r0Þgam

A
ð‘Þ
im

D
ð‘Þ

¼ 1

D
ð‘Þ g

ai þ 2i 2
X

m

l
m
p
m
j‘ðpmr0Þhð1Þ‘ ðp

m
r0Þ g

aiA
ð‘Þ
mm

� g
am
A

ð‘Þ
im

h i

( )

¼ g
ai

D
ð‘Þ þ 2i 2

X

m 6¼i

l
m
p
m
j‘ðpmr0Þhð1Þ‘ ðp

m
r0Þ g

ai

A
ð‘Þ
mm

D
ð‘Þ � g

am

A
ð‘Þ
im

D
ð‘Þ

" #

: ð18Þ

From this equation it is obvious that, in our approach, scattering and production have ex-

actly the same poles in the complex energy plane, as they share the global denominator D.

4.3. The central result

The pole structure of our production amplitude is exhibited very explicitly in formula

(18), and shows that it is completely given by D, the very same denominator that deter-

mines the pole structure for elastic scattering. The conclusion is that resonance shapes

are different for production and scattering because they are largely determined by the

respective numerators. Moreover, precisely the numerator Aii describing elastic scattering

in the ith two-meson channel has dropped out of expression (18). Hence, when restricted

to a one-channel model, our production amplitude is completely determined by just the

denominator D.

The result (18) may be substituted into relation (15). Moreover, using expression (14)

for the partial-wave amplitudes, we arrive at

aða ! iÞ ¼ ffiffiffi

p
p

X

‘;m

ð�iÞ‘j‘ðpir0ÞY ð‘Þ
m ðp̂iÞQðaÞ

‘q�q
ðEÞ

� g
ai

D
ð‘Þ þ i

X

m 6¼i

l
m
p
m
h
ð1Þ
‘ ðp

m
r0Þ g

ai

t‘ðm ! mÞ
j‘ðpmr0Þ

� g
am

t‘ði ! mÞ
j‘ðpir0Þ

� �

( )

: ð19Þ

Eq. (19) is the central result of our paper. It explicitly relates the ingredients of elastic scat-

tering to the amplitude for production in the spectator approximation. We were able to

achieve this because in the RSE one can determine in an analytically closed form all terms

of the perturbation expansions (5) [2] and (15). Hence, relations (11)–(13) can be derived

and explicitly verified. We may thus conclude that at least for a non-relativistic (NR)

microscopic model, i.e., at low energies, production and scattering are related to one an-

other through Eq. (19).

4.4. P ¼ T=V

Expression (18) takes an extremely simple form in the case that all inelasticity is either

absent or neglected. For the ‘th partial wave of the production amplitude (15), we then

obtain

að‘Þ / j‘ðpr0ÞQðaÞ
‘q�q
ðEÞ 1

D
ð‘Þ : ð20Þ
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tði ! jÞ ¼ hi;~pijtjj;~pji ¼ hi;~pijðV þ VGV þ VGVGV þ . . .Þjj;~pji

¼
2

4p2

X

1

‘¼0

ð2‘þ 1ÞP ‘ðp̂i � p̂jÞj‘ðpir0Þj‘ðpjr0Þ
A

ð‘Þ
ij ðEÞ

D
ð‘ÞðEÞ

; ð5Þ

where A and D are functions of the total invariant mass E satisfying the unitarity condi-

tion

ImðDð‘Þ
A

ð‘Þ
ij

�
Þ ¼ 2 2

X

m

lmpmj
2
‘ðpmr0ÞA

ð‘Þ
im A

ð‘Þ
jm

�
: ð6Þ

The denominator D contains the full pole structure of the coupled two-meson states. In

order to be a bit more specific, let us consider the scattering of charmed mesons, i.e.,

D�D;D� �D;D� �D�;Ds
�Ds;D

�
s
�Ds and D�

s
�D�
s , all coupled to c�c. For such a process, D has in

the RSE the form

D
ð‘ÞðEÞ ¼ 1þ 2i 2

X

m

g2m

X

1

n¼0

jF
ðnÞ
c�c ðr0Þj

2

E � En

( )

lmpmj‘ðpmr0Þh
ð1Þ
‘ ðpmr0Þ; ð7Þ

where the outer sum runs over all two-meson channels, and the inner sum over all recur-

rencies n for the operator H c describing confinement in the c�c system. F
ðnÞ
c�c and En repre-

sent the eigenstate and eigenvalue of the nth recurrency of the of H c spectrum, respectively.

Furthermore, the gm stand for the relative couplings of each of the two-meson systems to

c�c, while h
ð1Þ
‘ is a spherical Hankel function of the first kind.

The denominator DðEÞ vanishes for E near En and small overall coupling . In this case,

the scattering cross sections in all channels display narrow spikes for values of E in the

vicinity of Enðn ¼ 0; 1; 2; . . .Þ. Hence, for small , the theoretical cross sections repro-

duce—up to small shifts—the hypothetical c�c confinement spectrum.

However, for larger values of the zeros in D are no longer near the eigenvalues of H c,

but move deeper into the complex E plane, farther away from the real axis and with appre-

ciable shifts for the real parts as well. Then, the resonance spectrum does no longer repro-

duce the spectrum of H c: resonances start overlapping and even the number of zeros in D

that lie close enough to the real energy axis to be observed experimentally may change. We

believe this describes quite accurately the true situation in hadron spectroscopy.

Below the lowest threshold, poles, i.e., zeros in D (Eq. 7), come out on the real axis,

because the expression ij‘h
ð1Þ
‘ turns real. In that case, expression (5) describes bound c�c

states, such as gc; J=w; vcð1P Þ and wð2SÞ, yet with an admixture of two-meson compo-

nents. The energy eigenvalues of these ‘‘dressed’’ states then depend on the value of .

It has been observed [9,10] that charmonium mass shifts with respect to the pure confine-

ment spectrum can be surprisingly large in the RSE, as well as in other approaches [11].

In the present work, we intend to derive relations among A
ð‘Þ
ij ;D

ð‘Þ and Z
ð‘Þ
ij . In princi-

ple, this could be achieved by just performing the calculus outlined in Ref. [2]. However,

here we shall allow more general expressions for the Z matrix in the Born term (4). Hence,

apart from the unitarity condition (6), we must construct a second relation. For that pur-

pose, we write the identity
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IV. Selected Results

1) Light scalar mesons (EvB, GR, et al., Z. Phys. C 30 (1986) 615)

f0(470− i208), K ∗0 (727− i263), a0(968− i28), f0(994− i20)



2) Scalar charmed mesons D∗s0(2317) , D∗0 (2300)

(EvB & GR, Phys. Rev. Lett. 91 (2003) 012003)

for the quark masses, of course. By comparing the results

of the full model [9] with those of the one-channel limit

of Ref. [10], we verify that the higher, closed channels do

not have much influence on the general scattering proper-

ties, but have some effect on the precise pole positions.

The two singularities studied in each of Figs. 1 and 2

are the two lowest-lying poles of the scattering ampli-

tude. We study their positions as a function of the overall

coupling constant �. The here chosen physical value

of � equals 0.75, as in Refs. [10–14]. However, by just

showing the respective pole positions at � � 0:75 in

Figs. 1 and 2, important information on their differences

would be concealed. Moreover, the display of the pole

trajectories reveals what could happen if Nature were to

choose a somewhat different value for �. We shall come

back to this point further on.

As one observes from the two figures, the behavior

upon decoupling �� # 0� is completely different. Whereas

the higher of the two singularities in each figure ends up

at the genuine cn=s confinement ground states, which are

at 2.44 GeV for cn and 2.55 GeV for cs, respectively, for

our model parameters, the lower poles disappear into the

background, with ever increasing width. A similar be-

havior has been observed for the S-matrix poles of the

light scalar mesons [13,14].

The lower pole in D� scattering (Fig. 1) does not end

up below threshold when the overall coupling � is in-

creased to the physical value � � 0:75, and settles at E �
2:03� 0:075i GeV. Hence, in experiment it will be ob-

served as a structure from threshold upwards in the

partial-wave scattering cross section. For the given pole

position, this corresponds to a peak at about 2.1 GeV, with

a width of 150 MeV, thus coming out some 70 MeV higher

than the real part of the pole. This shift is manifest in our

description of resonances, getting more and more sizable

as the resonance width increases. For instance, in our fit

of the S-wave K� phase shifts, the cross-section peak

shows up more than 100 MeVabove the K�
0
�800� pole [10].

On the other hand, one should also realize from Fig. 1 that

a very modest decrease of � � 0:75 would give rise not

only to a larger real part of the pole position, but also of

the imaginary part, thereby amplifying the mentioned

shift upwards. Such a decrease of � can be justified on the

basis of flavor symmetry [15]. Therefore, we expect a D�
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resonance somewhere in the energy interval 2.1–2.3 GeV,

possibly with a width of several hundred MeV [15]. This

may correspond to the preliminary D�
0
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reported by the BELLE Collaboration [16], with a mass

of 2.29 GeV and a width of 305 MeV.

The lower pole in DK scattering (Fig. 2) settles on

the real axis for � � 0:335. However, for the sake of

clarity we have depicted its trajectory slightly away
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ends up on the real axis at 2.21 GeV, i.e., well below

threshold. Then it moves upwards as a virtual bound state,
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FIG. 2. S-matrix poles for DK S-wave scattering as a function

of the coupling constant �. Threshold is at 2.363 GeV; units are
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with the real axis. For clarity, we have displaced the virtual

bound states slightly downwards, and the real bound states

upwards. Notice that for � � 0:75 (physical value) one has a

real bound state in this model.

FIG. 1. S-matrix poles for D� S-wave scattering as a func-

tion of the coupling constant �. Threshold is at 2.009 GeV;

units are in GeV.
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3) X (4260), EvB & GR, Phys. Rev. Lett. 105 (2010) 102001

⇒ BaBaR Collaboration, Phys. Rev. Lett. 95 (2005) 142001
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http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/4260.htm

X(4260)

      

   No signal in ππJ/ψ where the ψ(4S) is expected,   
   Because ψ(4S)→Ds*Ds* depletes the ππJ/ψ signal.
  

  - data from BaBar, Phys. Rev. Lett. 95, 142001 (2005)
  - EvB, GR, Chin. Phys. C 35 (2011) 319
  - EvB, GR, Phys. Rev. Lett. 105 (2010) 102001

http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/4260.htm


http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/depletion.htm

Depletion

            

Radiation of a system with
  vacuum quantum numbers (σ).  

The cc system
jumps to a lower lying
stable state: ψ(1,2S).

Open-charm decay
via the creation of

  a light quark-antiquark pair.  

  Left:   Slow radiation process.
  Right:   Fast open-charm decay.

  The latter process dominates at resonances and threshold
  enhancements.
  - EvB, GR, arXiv:0904.4351
  - EvB, GR, J. Segovia, Phys. Rev. Lett. 105 (2010) 102001

http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/depletion.htm


http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/octopsi.htm

Depletion by open-charm decays
of the X(4260) signal

in π+π- J/ψ

By threshold enhancements:
DD, DD*, DsDs, D*D*, DsDs*, Ds*Ds*, ΛcΛc.

By cc resonances: ψ(3S), ψ(2D), ψ(4S), ψ(3D).

  - data from BaBar, Phys. Rev. Lett. 95, 142001 (2005)
  - figure from Evb, GR, JS, Phys. Rev. Lett. 105, 102001 (2010)

http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/octopsi.htm


4) X (3872) as a unitarised 1++ cc̄ state

⇒ SC, GR, EvB, Eur. Phys. J. C 71 (2011) 1762

• In RSE, bare 2 3P1 cc̄ state lies at 3979 MeV;

• Couple it to D0D∗0 and other OZI-allowed channels, as well as to
ωJ/ψ and ρ0J/ψ;

• ωJ/ψ and ρ0J/ψ channels are smeared out so as to account for
the ω and ρ widths, by taking complex ω and ρ masses and
reunitarising the S-matrix (see paper in EPJC);

• D0D∗0 and ρ0J/ψ data are easily described (see plot on next slide),
as well as the ωJ/ψ/ρ0J/ψ branching ratio;

• Corresponding X (3872) pole settles at or slightly below the
D0D∗0 threshold, with an imaginary part of about 0.1–0.7 MeV;

• Peak in ρ0J/ψ at ≈ 3872 MeV and cusp-like structure in D0D∗0

at ≈ 3874 MeV appear naturally, with no need for an additional
state.



0 2 4 6

10

20

30

40

E (MeV)

k
|T

|2
(M

eV
)

•

•

•

•
•

D0D∗0
1

2

3



5) D1(2420), D1(2430), Ds1(2536), Ds1(2460)

⇒ SC, GR, EvB, Phys. Rev. D 84 (2011) 094020

• D1(2420) and D1(2430) are almost degenerate in mass, whereas
Ds1(2536) and Ds1(2460) are 76 MeV apart;

• Ds1(2536) and Ds1(2460) are very narrow (< 2.3 resp. < 3.5
MeV, D1(2420) is narrow (20–25 MeV), and D1(2430) is very
broad (∼ 384 MeV);

• No simple quark model, with spin-orbit splitting, can reproduce
this pattern of masses and widths;

• Also chiral Lagrangians for heavy-light systems, with chiral loop
corrections, fail dramatically, with the loops even worsening the
discrepancies.

• Our work: couple bare 3P1 and 1P1 cq̄ and cs̄ systems to the most
important OZI-allowed meson-meson channels, in RSE approach;

• Dynamics of equations generates 2 quasi-bound states in the con-
tinuum (D1(2420) and Ds1(2536)), as well as 2 strongly shifted
states (D1(2430) and Ds1(2460)); see next slide;

• 8 observables are quite well reproduced with 2 parameters.



Left: D1(2430) pole trajectories. Right: Ds1(2460) and Ds1(2536).
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V. Conclusions

⇒ Meson spectroscopy is in a globally bad shape:

• Many states predicted by the quark model are missing, especially
in the charmed, bottom, charmonium, and bottomonium sectors.

• In the light-quark sector, there are very serious discrepancies be-
tween several excited states and the Godfrey-Isgur model.

• Other funnel-type models will hardly do much better there.

• As nearly all resonances below 2 GeV are inelastic, there is little
hope that lattice QCD will come to rescue in the near future.

• A model with harmonic confinement and flavour-independent
spacings of ≈380 MeV appears to be favoured below 2 GeV.

• When unquenched, such a model also works for charmonium, bot-
tomonium, and charmed mesons, besides automatically generat-
ing the light scalar mesons.

• Dedicated spectroscopy experiments are needed in the 1–2 GeV
region, with reliable partial-wave analyses, and no PDG bias.
COMPASS might play a significant role here.
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sible that the artefacts produced in the COMPASS setup
are just not well studied yet for small diphoton masses.

The MC simulations shown in Ref. [1] were actually
produced for the process studied in Ref. [4]. However,
in that study the background-to-signal ratio for the en-
hancement near 40 MeV is the same as for the process
considered in Ref. [3]. For completeness, we include in
Fig. 8 a comparison of the MC simulations of Ref. [1]
and the actual experimental data of Ref. [4]. We find
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FIG. 8: Similar to FIG. 7, but now compared to the actual
experimental data of Ref. [4].

that also in this case the experimental data below 50
MeV are not at all well described by the MC simulations
of Ref. [1]. The discrepancy between data and simulation
at low diphoton masses is even more serious.

In conclusion, we welcome the efforts of the authors of
Ref. [1] to explain the observed enhancement in the 35–
51 MeV diphoton invariant-mass region by conventional
methods. However, with the present MC simulations,
the existence of a resonance-like structure at about 38
MeV cannot be excluded at all. We suggest to include
in future simulations the possibility of E(38) desintegra-
tion in the EM calorimeter ECAL2, since we expect that
this tentative light boson has rather stable modes, which
could easily survive the 30 meters that separate ECAL2
from the target.

FUTURE

Although the question whether there exists a (scalar)
boson with a mass of about 38 MeV does not depend ex-

clusively on the existence of a resonance-like structure in
the experimental data of Ref. [3], it is at present the clear-
est signal we have found in many experiments. Diphoton
data for the mass interval 10–100 MeV are very rare and
usually with low statistics. Therefore, it is very impor-
tant that the present issue be settled, which requires a
profound understanding of all possible sources of arte-
facts.

[1] J. Bernhard, J. M. Friedrich, T. Schlüter, K. Schönning
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