What does true meson spectroscopy encompass?

George Rupp

CFIF, Instituto Superior Técnico, Lisbon

Collaborator: Fef van Beveren PhD Student: Susana Coito

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- I. Introduction
- II. Problems with "Standard Model" for meson spectroscopy
- III. Resonance-Spectrum Expansion
- IV. Selected Results
- V. Conclusions

I. Introduction

- ⇒ Meson spectroscopy is in an impasse, despite many newly announced resonances:
- No systematic search for quark-model states is carried out in energy regions or for quantum numbers where states are missing.
- Usually only the biggest bumps in the data are considered relevant, often ignoring other interesting structures.
- Such bumps are invariably interpreted as resonances, without even considering possible threshold effects or phenomena related to inelasticities due to competing channels.
- When a new "resonance" does not seem to fit in mainstream spectroscopy, it becomes right away an exotic candidate, ignoring possible mass shifts due to meson loops ("unquenching").
- The PDG seems often biased by mainstream (quenched) quark models in cataloguing mesonic resonances.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Such models present a number of very serious problems.

- II. Problems with "Standard Model" for meson spectroscopy
- ⇒ Reference (quenched) quark model (1681 citations in INSPIRE): Stephen Godfrey and Nathan Isgur, Phys. Rev. D 32 (1985) 189:
- Typical Coulomb-plus-linear ("funnel") confing potential, with a phenomenological running strong coupling α_s(r).
- One-gluon exchange gives rise the Coulombic part, as well as the usual spin-spin and spin-orbit interactions.
- The model uses relativistic kinematics, fixed constituent quark masses, and phenomenological smearing functions as regulators.
- The model was applied to a very large variety of light, heavy-light, and heavy $q\bar{q}$ states, thus almost covering the whole PDG meson spectrum.
- Most other constituent quark model predict masses that are generally in reasonable agreement with those of the Godfrey-Isgur (GI) model, but no other model has been applied so widely.
- Despite the enormous merits of the GI model, several shortcomings have become evident over the years.

GI model, light-quark isoscalar mesons:

200

Principal problems:

- $0^{++}/{}^{3}P_{0}$: Lowest GI scalar ~ 500 MeV heavier than $f_{0}(600)$.
- $0^{++}/{}^{3}P_{0}$: GI $s\bar{s}$ scalar almost 400 MeV heavier than $f_{0}(980)$.
- $2^{++}/{}^{3}P_{2}-{}^{3}F_{2}$: PDG listings report 6 likely $n\bar{n}$ (n = u, d) states up to ≈ 2.15 GeV, viz. $f_{2}(1270)$, $f_{2}(1565)$, $f_{2}(1640)$, $f_{2}(1810)$, $f_{2}(1910)$, $f_{2}(2150)$, whereas GI only predict 3.

In probably dominant $s\bar{s}$ sector, PDG also lists 6 states up to ≈ 2.35 GeV: $f_2(1430)$, $f'_2(1525)$, $f_2(1950)$, $f_2(2010)$, $f_2(2300)$, $f_2(2340)$, and GI again only predicts 3.

Note: some PDG f_2 states may not be resonances (see D. V. Bugg, Phys. Rept. **397** (2004) 257), but $f_2(1565)$ looks reliable. Then, PDG: $m(2^{3}P_2) - m(1^{3}P_2) \approx 300$ MeV; GI: $m(2^{3}P_2) - m(1^{3}P_2) = 540$ MeV.

For unknown reasons, PDG omits $f_2(1565)$ from Summary Table.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $1^{+-}/{}^{1}P_{1}$: PDG $n\bar{n}$ states: $h_{1}(1170)$, $h_{1}(1595)$. GI predicts: $h_{1}(1220)$ (1 ${}^{1}P_{1}$), $h_{1}(1780)$ (2 ${}^{1}P_{1}$).

GI model, light-quark isovector mesons:

Principal problems:

- $0^{++}/{}^{3}P_{0}$: PDG: $a_{0}(980)$, $a_{0}(1450)$. GI: $a_{0}(1090)$ $(1 \, {}^{3}P_{0})$, $a_{0}(1780)$ $(2 \, {}^{3}P_{0})$.
- $1^{++}/{}^{3}P_{1}$: PDG: $a_{1}(1260)$, $a_{0}(1640)$.

GI: $a_1(1240 (1 {}^{3}P_1), a_1(1820) (2 {}^{3}P_1).$

• 2⁺⁺/³P₂: PDG: a₂(1320), a₂(1700).

GI: $a_2(1310 (1^{3}P_2), a_2(1820) (2^{3}P_2).$

• $1^{--}/{}^{3}S_{1}-{}^{3}D_{1}$: PDG: $\rho(1450)$, $\rho(1570)$, $\rho(1700)$, $\rho(1900)$. GI: $\rho(1450 (2 {}^{3}S_{1}))$, $\rho(1660) (1 {}^{3}D_{1})$, $\rho(2000) (3 {}^{3}S_{1})$, $\rho(2150) (2 {}^{3}D_{1})$. Note: a recent analytic *S*-matrix analysis by S. Surovtsev and P. Bydzovsky, Nucl. Phys. A **807** (2008) 145, arrived at assignments quite different from both PDG and GI (see Table): $\rho(1250)$, $\rho(1470)$, $\rho(1600)$, $\rho(1900)$. Also, they conclude that only $\rho(1250)$ and $\rho(1600)$ are crucial to describe the phase shifts, whereas $\rho(1900)$ and, to a lesser extent, $\rho(1470)$ improve the inelasticity (see plot). PDG hides $\rho(1250)$ under the $\rho(1450)$ entry!!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

S. Surovtsev, P. Bydzovsky, Nucl. Phys. A 807 (2008) 145

Table 1

Pole clusters distributed on sheets II, III, and IV for the ρ -like resonances. $\sqrt{s_r}$ in MeV is given

	Three resonances		
	П	III	IV
ρ(770)	$767.3 \pm 0.6 - i(73.3 \pm 0.5)$	$782 \pm 10.9 - i(65.6 \pm 4.7)$	
$\rho(1250)$		$1249.9 \pm 19.9 - i(152 \pm 14.3)$	$1249 \pm 16.9 - i(146.2 \pm 14.4)$
$\rho(1600)$		$1585 \pm 15.3 - i(130.5 \pm 22.5)$	$1578 \pm 8.8 - i(72.2 \pm 12.5)$
	Four resonances		
	П	III	IV
ρ(770)	$766.5 \pm 0.6 - i(73.2 \pm 0.5)$	$783.1 \pm 10.6 - i(66.2 \pm 4.9)$	
ρ(1250)		$1251.4 \pm 18.8 - i(152.1 \pm 14.2)$	$1249 \pm 16.3 - i(144.3 \pm 13.9)$
$\rho(1600)$		$1585.2 \pm 18.2 - i(141.8 \pm 22.3)$	$1579.6 \pm 8.1 - i(73.6 \pm 10.3)$
$\rho(1900)$		$1871.5 \pm 30.5 - i(97.2 \pm 30.1)$	$1894 \pm 33.6 - i(95.3 \pm 32)$
	Five resonances		
	П	III	IV
ρ(770)	$765.8 \pm 0.6 - i(73.3 \pm 0.4)$	$778.2 \pm 9.1 - i(68.9 \pm 3.9)$	
$\rho(1250)$		$1251.4 \pm 11.3 - i(130.9 \pm 9.1)$	$1251 \pm 11.1 - i(130.5 \pm 9.2)$
$\rho(1470)$		$1469.4 \pm 10.6 - i(91 \pm 12.9)$	$1465.4 \pm 12.1 - i(99.8 \pm 15.6)$
$\rho(1600)$		$1634 \pm 20.1 - i(144.7 \pm 23.8)$	$1592.9 \pm 7.9 - i(73.7 \pm 11.7)$
ρ(1900)		$1882.8 \pm 24.8 - i(112.4 \pm 25.2)$	$1893 \pm 21.9 - i(93.4 \pm 19.9)$

Table 2 Calculated masses and total widths of the ρ -states (all in MeV)

	m _{res}	$\Gamma_{\rm tot}$
ρ(770)	769.3 ± 0.6	146.6 ± 0.9
ρ(1250)	1257.8 ± 11.1	261 ± 18.3
$\rho(1470)$	1468.8 ± 12.1	199.6 ± 31.2
ρ(1600)	1594.6 ± 8	147.4 ± 23.4
$\rho(1900)$	1895.3 ± 21.9	186.8 ± 39.8

S. Surovtsev, P. Bydzovsky, Nucl. Phys. A **807** (2008) 145 $\pi\pi$ - $\omega\pi$ inelasticity η :

GI model, strange mesons:

500

Principal problems:

- 0⁻/¹S₀: PDG: K(1460), K(1830).
 GI: K(1450) (2¹S₀), K(2020 (3¹S₀).
- 0⁺/³P₀: PDG: $K_0^*(800)$, $K_0^*(1430)$, $K_0^*(1950)$. GI: $K_0^*(1240)$ (1³P₁), $K_0^*(1890)$ (2³P₁)
- $1^{-}/{}^{3}S_{1}-{}^{3}D_{1}$: PDG: $K^{*}(1410)$, $K^{*}(1680)$. GI: $K^{*}(1580)$ (2 ${}^{3}S_{1}$), $K^{*}(1780)$ (1 ${}^{3}D_{1}$).
- $1^+/{}^3P_1 {}^1P_1$: PDG: $K_1(1270)$, $K_1(1400)$, $K_1(1650)$. GI: $K_1(1340)$ (1 1P_1), $K_1(1380)$ (1 3P_1), $K_1(1900)$ (2 1P_1), $K_1(1930)$ (2 3P_1).
- $2^{-}/{}^{1}D_{2}-{}^{3}D_{2}$: PDG: $K_{2}(1580)$, $K_{2}(1770)$, $K_{2}(1820)$, $K_{2}(2250)$. GI: $K_{2}(1780)$ (1 ${}^{1}D_{2}$), $K_{2}(1810)$ (1 ${}^{3}D_{2}$), $K_{2}(2230)$ (2 ${}^{1}D_{2}$), $K_{2}(2260)$ (2 ${}^{3}D_{2}$).

GI model, charmonia:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

2009 $D^*\bar{D}^*$ BABAR data on vector charmonium:

Our interpretation (EvB & GR, Chin. Phys. C 35 (2011) 1):

GI model, charmed mesons:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

GI model, bottomonia:

- 4 臣 🕨 - 4 æ

III. Resonance-Spectrum Expansion

(EvB & GR, Annals Phys. 324 (2009) 1620)

 \Rightarrow Building blocks of (non-exotic) RSE are:

- V is the effective two-meson potential;
- Ω is the two-meson loop function;
- the blobs are the ${}^{3}P_{0}$ vertex functions, modelled by a spherical δ shell in *r* space, i.e., a spherical Bessel function in *p* space;
- the wiggly lines stand for *s*-channel exchanges of infinite towers of $q\bar{q}$ states, i.e., a kind of Regge propagators.

 \Rightarrow For *N* meson-meson channels and several $q\bar{q}$ channels:

$$V_{ij}^{(L_i,L_j)}(p_i, p'_j; E) = \lambda^2 r_0 j_{L_i}^i(p_i r_0) j_{L_j}^j(p'_j r_0) \sum_{\alpha=1}^{N_{q\bar{q}}} \sum_{n=0}^{\infty} \frac{g_i^{(\alpha)}(n) g_j^{(\alpha)}(n)}{E - E_n^{(\alpha)}}$$

$$\equiv \mathcal{R}_{ij}(E) j_{L_i}^i(p_i r_0) j_{L_j}^j(p'_j r_0) .$$

 \Rightarrow The closed-form off-energy-shell *T*-matrix then reads

$$\begin{split} T_{ij}^{(L_i,L_j)}(p_i,p_j';E) &= \\ &-2\lambda^2 r_0 \sqrt{\mu_i p_i \mu_j' p_j'} \, j_{L_i}^i(p_i r_0) \sum_{m=1}^N \mathcal{R}_{im}(E) \, \left\{ [1 - \Omega \, \mathcal{R}]^{-1} \right\}_{mj} \, j_{L_j}^j(p_j' r_0) \,, \\ &\Omega \; = \; -2i\lambda^2 r_0 \, \text{diag} \left(j_{L_n}^n(k_n r_0) h_{L_n}^{(1)n}(k_n r_0) \right) \,. \end{split}$$

 \Rightarrow The corresponding unitary and symmetric S-matrix is given by

$$S_{ij}^{(L_i,L_j)}(k_i,k_j';E) = \delta_{ij} + 2iT_{ij}^{(L_i,L_j)}(k_i,k_j';E)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Production amplitudes (EvB & GR, Annals Phys. 323 (2008) 1215):

$$\begin{aligned} a(\alpha \to i) &= \frac{\hat{\lambda}}{\sqrt{\pi}} \sum_{\ell,m} (-i)^{\ell} j_{\ell}(p_{i}r_{0}) Y_{m}^{(\ell)}(\hat{p}_{i}) Q_{\ell_{q\bar{q}}}^{(\alpha)}(E) \\ &\times \left\{ \frac{g_{\alpha i}}{\mathcal{D}^{(\ell)}} + i \sum_{\nu \neq i} \mu_{\nu} p_{\nu} h_{\ell}^{(1)}(p_{\nu}r_{0}) \left[g_{\alpha i} \frac{t_{\ell}(\nu \to \nu)}{j_{\ell}(p_{\nu}r_{0})} - g_{\alpha \nu} \frac{t_{\ell}(i \to \nu)}{j_{\ell}(p_{i}r_{0})} \right] \right\} \end{aligned}$$

$$\mathcal{D}^{(\ell)}(E) = 1 + 2i\lambda^2 \sum_{\nu} g_{\nu}^2 \left\{ \sum_{n=0}^{\infty} \frac{|F_{c\bar{c}}^{(n)}(r_0)|^2}{E - E_n} \right\} \mu_{\nu} p_{\nu} j_{\ell}(p_{\nu} r_0) h_{\ell}^{(1)}(p_{\nu} r_0)$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ Ξ ∽9.00

IV. Selected Results

1) Light scalar mesons (EvB, GR, *et al.*, Z. Phys. C **30** (1986) 615) $f_0(470 - i208), K_0^*(727 - i263), a_0(968 - i28), f_0(994 - i20)$

2) Scalar charmed mesons D^{*}_{s0}(2317), D^{*}₀(2300)
(EvB & GR, Phys. Rev. Lett. **91** (2003) 012003)

3) X(4260), EvB & GR, Phys. Rev. Lett. 105 (2010) 102001
 ⇒ BaBaR Collaboration, Phys. Rev. Lett. 95 (2005) 142001

~ ~ ~ ~ ~

http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/4260.htm

http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/octopsi.htm

- 4) X(3872) as a unitarised 1^{++} $c\bar{c}$ state
- ⇒ SC, GR, EvB, Eur. Phys. J. C **71** (2011) 1762
- In RSE, bare $2^{3}P_{1} c\bar{c}$ state lies at 3979 MeV;
- Couple it to $D^0 D^{*0}$ and other OZI-allowed channels, as well as to $\omega J/\psi$ and $\rho^0 J/\psi$;
- $\omega J/\psi$ and $\rho^0 J/\psi$ channels are smeared out so as to account for the ω and ρ widths, by taking complex ω and ρ masses and reunitarising the S-matrix (see paper in EPJC);
- $D^0 D^{*0}$ and $\rho^0 J/\psi$ data are easily described (see plot on next slide), as well as the $\omega J/\psi / \rho^0 J/\psi$ branching ratio;
- Corresponding X(3872) pole settles at or slightly below the D⁰D^{*0} threshold, with an imaginary part of about 0.1–0.7 MeV;
- Peak in $\rho^0 J/\psi$ at ≈ 3872 MeV and cusp-like structure in $D^0 D^{*0}$ at ≈ 3874 MeV appear naturally, with no need for an additional state.

5) $D_1(2420)$, $D_1(2430)$, $D_{s1}(2536)$, $D_{s1}(2460)$

 \Rightarrow SC, GR, EvB, Phys. Rev. D **84** (2011) 094020

- $D_1(2420)$ and $D_1(2430)$ are almost degenerate in mass, whereas $D_{s1}(2536)$ and $D_{s1}(2460)$ are 76 MeV apart;
- $D_{s1}(2536)$ and $D_{s1}(2460)$ are very narrow (< 2.3 resp. < 3.5 MeV, $D_1(2420)$ is narrow (20–25 MeV), and $D_1(2430)$ is very broad (~ 384 MeV);
- No simple quark model, with spin-orbit splitting, can reproduce this pattern of masses and widths;
- Also chiral Lagrangians for heavy-light systems, with chiral loop corrections, fail dramatically, with the loops even worsening the discrepancies.
- Our work: couple bare ³P₁ and ¹P₁ cq
 q and cs
 systems to the most important OZI-allowed meson-meson channels, in RSE approach;
- Dynamics of equations generates 2 quasi-bound states in the continuum ($D_1(2420)$ and $D_{s1}(2536)$), as well as 2 strongly shifted states ($D_1(2430)$ and $D_{s1}(2460)$); see next slide;
- 8 observables are quite well reproduced with 2 parameters.

Left: $D_1(2430)$ pole trajectories.

Right: $D_{s1}(2460)$ and $D_{s1}(2536)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

V. Conclusions

- \Rightarrow Meson spectroscopy is in a globally bad shape:
- Many states predicted by the quark model are missing, especially in the charmed, bottom, charmonium, and bottomonium sectors.
- In the light-quark sector, there are very serious discrepancies between several excited states and the Godfrey-Isgur model.
- Other funnel-type models will hardly do much better there.
- As nearly all resonances below 2 GeV are inelastic, there is little hope that lattice QCD will come to rescue in the near future.
- A model with harmonic confinement and flavour-independent spacings of $\approx 380 \ MeV$ appears to be favoured below 2 GeV.
- When unquenched, such a model also works for charmonium, bottomonium, and charmed mesons, besides automatically generating the light scalar mesons.
- Dedicated spectroscopy experiments are needed in the 1–2 GeV region, with reliable partial-wave analyses, and no PDG bias. COMPASS might play a significant role here.

▲□▶ ▲圖▶ ★厘≯ ★厘≯ 三臣 - の�?

▲ロト ▲園ト ★臣ト ★臣ト ―臣 ― のへで

