What does true meson spectroscopy encompass?

George Rupp

CFIF, Instituto Superior Técnico, Lisbon

Collaborator: Eef van Beveren
PhD Student: Susana Coito
I. Introduction
II. Problems with "Standard Model" for meson spectroscopy
III. Resonance-Spectrum Expansion
IV. Selected Results
V. Conclusions

I. Introduction

\Rightarrow Meson spectroscopy is in an impasse, despite many newly announced resonances:

- No systematic search for quark-model states is carried out in energy regions or for quantum numbers where states are missing.
- Usually only the biggest bumps in the data are considered relevant, often ignoring other interesting structures.
- Such bumps are invariably interpreted as resonances, without even considering possible threshold effects or phenomena related to inelasticities due to competing channels.
- When a new "resonance" does not seem to fit in mainstream spectroscopy, it becomes right away an exotic candidate, ignoring possible mass shifts due to meson loops ("unquenching").
- The PDG seems often biased by mainstream (quenched) quark models in cataloguing mesonic resonances.
- Such models present a number of very serious problems.
II. Problems with "Standard Model" for meson spectroscopy
\Rightarrow Reference (quenched) quark model (1681 citations in INSPIRE): Stephen Godfrey and Nathan Isgur, Phys. Rev. D 32 (1985) 189:
- Typical Coulomb-plus-linear ("funnel") confing potential, with a phenomenological running strong coupling $\alpha_{s}(r)$.
- One-gluon exchange gives rise the Coulombic part, as well as the usual spin-spin and spin-orbit interactions.
- The model uses relativistic kinematics, fixed constituent quark masses, and phenomenological smearing functions as regulators.
- The model was applied to a very large variety of light, heavy-light, and heavy $q \bar{q}$ states, thus almost covering the whole PDG meson spectrum.
- Most other constituent quark model predict masses that are generally in reasonable agreement with those of the Godfrey-Isgur (GI) model, but no other model has been applied so widely.
- Despite the enormous merits of the Gl model, several shortcomings have become evident over the years.

GI model, light-quark isoscalar mesons:

Principal problems:

- $0^{++} /{ }^{3} P_{0}$: Lowest GI scalar $\sim 500 \mathrm{MeV}$ heavier than $f_{0}(600)$.
- $0^{++} /{ }^{3} P_{0}$: GI ss̄ scalar almost 400 MeV heavier than $f_{0}(980)$.
- $2^{++} /{ }^{3} P_{2^{-}}{ }^{3} F_{2}$: PDG listings report 6 likely $n \bar{n}(n=u, d)$ states up to $\approx 2.15 \mathrm{GeV}$, viz. $f_{2}(1270), f_{2}(1565), f_{2}(1640), f_{2}(1810)$, f_{2} (1910), $f_{2}(2150)$, whereas GI only predict 3.
In probably dominant $s \bar{s}$ sector, PDG also lists 6 states up to $\approx 2.35 \mathrm{GeV}: f_{2}(1430), f_{2}^{\prime}(1525), f_{2}(1950), f_{2}(2010), f_{2}(2300)$, $f_{2}(2340)$, and Gl again only predicts 3.
Note: some PDG f_{2} states may not be resonances (see D. V. Bugg, Phys. Rept. 397 (2004) 257), but $f_{2}(1565)$ looks reliable. Then, PDG: $m\left(2^{3} P_{2}\right)-m\left(1^{3} P_{2}\right) \approx 300 \mathrm{MeV} ; \mathrm{GI}: m\left(2^{3} P_{2}\right)-$ $m\left(1^{3} P_{2}\right)=540 \mathrm{MeV}$.
For unknown reasons, PDG omits $f_{2}(1565)$ from Summary Table.
- $1^{+-} /{ }^{1} P_{1}$: PDG $n \bar{n}$ states: $h_{1}(1170), h_{1}(1595)$.

GI predicts: $h_{1}(1220)\left(1^{1} P_{1}\right), h_{1}(1780)\left(2^{1} P_{1}\right)$.

GI model, light-quark isovector mesons:

Principal problems:

- $0^{++} /{ }^{3} P_{0}$: PDG: $a_{0}(980), a_{0}(1450)$.

$$
\mathrm{GI}: a_{0}(1090)\left(1^{3} P_{0}\right), a_{0}(1780)\left(2^{3} P_{0}\right) .
$$

- $1^{++} /{ }^{3} P_{1}$: PDG: $a_{1}(1260)$, $a_{0}(1640)$.

$$
\mathrm{GI}: a_{1}\left(1240\left(1^{3} P_{1}\right), a_{1}(1820)\left(2^{3} P_{1}\right)\right.
$$

- $2^{++} /{ }^{3} P_{2}$: PDG: $a_{2}(1320), a_{2}(1700)$.

GI: $a_{2}\left(1310\left(1^{3} P_{2}\right), a_{2}(1820)\left(2^{3} P_{2}\right)\right.$.

- $1^{--} /{ }^{3} S_{1-}{ }^{3} D_{1}$: PDG: $\rho(1450), \rho(1570), \rho(1700), \rho(1900)$.

GI: $\rho\left(1450\left(2^{3} S_{1}\right), \rho(1660)\left(1^{3} D_{1}\right), \rho(2000)\left(3^{3} S_{1}\right), \rho(2150)\left(2^{3} D_{1}\right)\right.$. Note: a recent analytic S-matrix analysis by S. Surovtsev and P. Bydzovsky, Nucl. Phys. A 807 (2008) 145, arrived at assignments quite different from both PDG and GI (see Table): $\rho(1250)$, $\rho(1470), \rho(1600), \rho(1900)$. Also, they conclude that only $\rho(1250)$ and $\rho(1600)$ are crucial to describe the phase shifts, whereas $\rho(1900)$ and, to a lesser extent, $\rho(1470)$ improve the inelasticity (see plot). PDG hides $\rho(1250)$ under the $\rho(1450)$ entry!!

S. Surovtsev, P. Bydzovsky, Nucl. Phys. A 807 (2008) 145

Table 1
Pole clusters distributed on sheets II, III, and IV for the ρ-like resonances. $\sqrt{s_{r}}$ in MeV is given

	Three resonances		
II	III	IV	
$\rho(770)$	$767.3 \pm 0.6-i(73.3 \pm 0.5)$	$782 \pm 10.9-i(65.6 \pm 4.7)$	
$\rho(1250)$		$1249.9 \pm 19.9-i(152 \pm 14.3)$	$1249 \pm 16.9-i(146.2 \pm 14.4)$
$\rho(1600)$		$1585 \pm 15.3-i(130.5 \pm 22.5)$	$1578 \pm 8.8-i(72.2 \pm 12.5)$
	Four resonances		
	II	III	IV
$\rho(770)$	$766.5 \pm 0.6-i(73.2 \pm 0.5)$	$783.1 \pm 10.6-i(66.2 \pm 4.9)$	
$\rho(1250)$		$1251.4 \pm 18.8-i(152.1 \pm 14.2)$	$1249 \pm 16.3-i(144.3 \pm 13.9)$
$\rho(1600)$		$1585.2 \pm 18.2-i(141.8 \pm 22.3)$	$1579.6 \pm 8.1-i(73.6 \pm 10.3)$
$\rho(1900)$		$1871.5 \pm 30.5-i(97.2 \pm 30.1)$	$1894 \pm 33.6-i(95.3 \pm 32)$
	Five resonances		
	II	III	IV
$\rho(770)$	$765.8 \pm 0.6-i(73.3 \pm 0.4)$	$778.2 \pm 9.1-i(68.9 \pm 3.9)$	
$\rho(1250)$		$1251.4 \pm 11.3-i(130.9 \pm 9.1)$	$1251 \pm 11.1-i(130.5 \pm 9.2)$
$\rho(1470)$		$1469.4 \pm 10.6-i(91 \pm 12.9)$	$1465.4 \pm 12.1-i(99.8 \pm 15.6)$
$\rho(1600)$		$1634 \pm 20.1-i(144.7 \pm 23.8)$	$1592.9 \pm 7.9-i(73.7 \pm 11.7)$
$\rho(1900)$		$1882.8 \pm 24.8-i(112.4 \pm 25.2)$	$1893 \pm 21.9-i(93.4 \pm 19.9)$

Table 2
Calculated masses and total widths of the ρ-states (all in MeV)

	$m_{\text {res }}$	$\Gamma_{\text {tot }}$
$\rho(770)$	769.3 ± 0.6	146.6 ± 0.9
$\rho(1250)$	1257.8 ± 11.1	261 ± 18.3
$\rho(1470)$	1468.8 ± 12.1	199.6 ± 31.2
$\rho(1600)$	1594.6 ± 8	147.4 ± 23.4
$\rho(1900)$	1895.3 ± 21.9	186.8 ± 39.8

S. Surovtsev, P. Bydzovsky, Nucl. Phys. A 807 (2008) 145 $\pi \pi-\omega \pi$ inelasticity η :

GI model, strange mesons:

Principal problems:

- $0^{-} /{ }^{1} S_{0}$: PDG: $K(1460), K(1830)$. GI: $K(1450)\left(2^{1} S_{0}\right), K\left(2020\left(3^{1} S_{0}\right)\right.$.
- $0^{+} /{ }^{3} P_{0}$: PDG: $K_{0}^{*}(800), K_{0}^{*}(1430), K_{0}^{*}(1950)$. $\mathrm{GI}: K_{0}^{*}(1240)\left(1^{3} P_{1}\right), K_{0}^{*}(1890)\left(2^{3} P_{1}\right)$
- $1^{-} /{ }^{3} S_{1^{-}}{ }^{3} D_{1}$: PDG: $K^{*}(1410), K^{*}(1680)$. $\mathrm{GI}: K^{*}(1580)\left(2^{3} S_{1}\right), K^{*}(1780)\left(1^{3} D_{1}\right)$.
- $1^{+} /{ }^{3} P_{1^{-}}{ }^{1} P_{1}$: PDG: $K_{1}(1270), K_{1}(1400), K_{1}(1650)$. GI: $K_{1}(1340)\left(1^{1} P_{1}\right), K_{1}(1380)\left(1^{3} P_{1}\right), K_{1}(1900)\left(2^{1} P_{1}\right)$, $K_{1}(1930)\left(2^{3} P_{1}\right)$.
- $2^{-} /{ }^{1} D_{2}{ }^{-} D_{2}$: PDG: $K_{2}(1580), K_{2}(1770), K_{2}(1820), K_{2}(2250)$. $\mathrm{GI}: K_{2}(1780)\left(1^{1} D_{2}\right), K_{2}(1810)\left(1^{3} D_{2}\right), K_{2}(2230)\left(2^{1} D_{2}\right)$, $K_{2}(2260)\left(2^{3} D_{2}\right)$.

GI model, charmonia:

$2009 D^{*} \bar{D}^{*}$ BABAR data on vector charmonium:

Our interpretation (EvB \& GR, Chin. Phys. C 35 (2011) 1):

Gl model, charmed mesons:

GI model, bottomonia:

III. Resonance-Spectrum Expansion
(EvB \& GR, Annals Phys. 324 (2009) 1620)
\Rightarrow Building blocks of (non-exotic) RSE are:

- V is the effective two-meson potential;
- Ω is the two-meson loop function;
- the blobs are the ${ }^{3} P_{0}$ vertex functions, modelled by a spherical δ shell in r space, i.e., a spherical Bessel function in p space;
- the wiggly lines stand for s-channel exchanges of infinite towers of $q \bar{q}$ states, i.e., a kind of Regge propagators.
\Rightarrow For N meson-meson channels and several $q \bar{q}$ channels:

$$
\begin{aligned}
V_{i j}^{\left(L_{i}, L_{j}\right)}\left(p_{i}, p_{j}^{\prime} ; E\right) & =\lambda^{2} r_{0} j_{L_{i}}^{i}\left(p_{i} r_{0}\right) j_{L_{j}}^{j}\left(p_{j}^{\prime} r_{0}\right) \sum_{\alpha=1}^{N_{q \bar{q}}} \sum_{n=0}^{\infty} \frac{g_{i}^{(\alpha)}(n) g_{j}^{(\alpha)}(n)}{E-E_{n}^{(\alpha)}} \\
& \equiv \mathcal{R}_{i j}(E) j_{L_{i}}^{i}\left(p_{i} r_{0}\right) j_{L_{j}}^{j}\left(p_{j}^{\prime} r_{0}\right)
\end{aligned}
$$

\Rightarrow The closed-form off-energy-shell T-matrix then reads

$$
\begin{aligned}
& T_{i j}^{\left(L_{i}, L_{j}\right)}\left(p_{i}, p_{j}^{\prime} ; E\right)= \\
& -2 \lambda^{2} r_{0} \sqrt{\mu_{i} p_{i} \mu_{j}^{\prime} p_{j}^{\prime}} j_{L_{i}}^{j}\left(p_{i} r_{0}\right) \sum_{m=1}^{N} \mathcal{R}_{i m}(E)\left\{[\mathbb{1}-\Omega \mathcal{R}]^{-1}\right\}_{m j} j_{L_{j}}^{j}\left(p_{j}^{\prime} r_{0}\right) \\
& \Omega=-2 i \lambda^{2} r_{0} \operatorname{diag}\left(j_{L_{n}}^{n}\left(k_{n} r_{0}\right) h_{L_{n}}^{(1) n}\left(k_{n} r_{0}\right)\right)
\end{aligned}
$$

\Rightarrow The corresponding unitary and symmetric S-matrix is given by

$$
S_{i j}^{\left(L_{i}, L_{j}\right)}\left(k_{i}, k_{j}^{\prime} ; E\right)=\delta_{i j}+2 i T_{i j}^{\left(L_{i}, L_{j}\right)}\left(k_{i}, k_{j}^{\prime} ; E\right)
$$

Production amplitudes (EvB \& GR, Annals Phys. 323 (2008) 1215):

$$
\begin{aligned}
a(\alpha \rightarrow i)= & \frac{\lambda}{\sqrt{\pi}} \sum_{\ell, m}(-i)^{\ell} j_{\ell}\left(p_{i} r_{0}\right) Y_{m}^{(\ell)}\left(\hat{p}_{i}\right) Q_{\ell_{q \bar{q}}}^{(\alpha)}(E) \\
& \times\left\{\frac{g_{\alpha i}}{\mathcal{D}^{(\ell)}}+i \sum_{v \neq i} \mu_{v} p_{v} h_{\ell}^{(1)}\left(p_{v} r_{0}\right)\left[g_{\alpha i} \frac{t_{\ell}(v \rightarrow v)}{j_{\ell}\left(p_{v} r_{0}\right)}-g_{\alpha v} \frac{t_{\ell}(i \rightarrow v)}{j_{\ell}\left(p_{i} r_{0}\right)}\right]\right\}
\end{aligned}
$$

$$
\mathcal{D}^{(\ell)}(E)=1+2 i \lambda^{2} \sum_{v} g_{v}^{2}\left\{\sum_{n=0}^{\infty} \frac{\left|F_{c \bar{c}}^{(n)}\left(r_{0}\right)\right|^{2}}{E-E_{n}}\right\} \mu_{v} p_{v} j_{\ell}\left(p_{v} r_{0}\right) h_{\ell}^{(1)}\left(p_{v} r_{0}\right)
$$

IV. Selected Results

1) Light scalar mesons (EvB, GR, et al., Z. Phys. C 30 (1986) 615)

$$
f_{0}(470-i 208), K_{0}^{*}(727-i 263), a_{0}(968-i 28), f_{0}(994-i 20)
$$

2) Scalar charmed mesons $D_{s 0}^{*}(2317), D_{0}^{*}(2300)$
(EvB \& GR, Phys. Rev. Lett. 91 (2003) 012003)

3) $X(4260)$, EvB \& GR, Phys. Rev. Lett. 105 (2010) 102001
\Rightarrow BaBaR Collaboration, Phys. Rev. Lett. 95 (2005) 142001

http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/4260.htm

No signal in $\Pi \Pi J / \Psi$ where the $\Psi(4 S)$ is expected, Because $\Psi(4 S) \rightarrow D_{s} * \underline{D}_{s} *$ depletes the $\Pi \Pi J / \Psi$ signal.

- data from BaBar, Phys. Rev. Lett. 95, 142001 (2005)
- EvB, GR, Chin. Phys. C 35 (2011) 319
- EvB, GR, Phys. Rev. Lett. 105 (2010) 102001
http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/depletion.htm

Depletion		
Radiation of a system with vacuum quantum numbers (σ). The cc system jumps to a lower lying stable state: $\psi(1,2 S)$.	Open-charm decay via the creation of	
a light quark-antiquark pair.		

Left: Slow radiation process.

 Right: Fast open-charm decay.The latter process dominates at resonances and threshold enhancements.

- EvB, GR, arXiv:0904.4351
- EvB, GR, J. Segovia, Phys. Rev. Lett. 105 (2010) 102001
http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/octopsi.htm

$$
\begin{gathered}
\begin{array}{c}
\text { Depletion by open-charm decays } \\
\text { of the } \mathbf{X (4 2 6 0)} \\
\text { in } \mathrm{I}^{+} \mathrm{I}^{-} \mathrm{J} / \Psi
\end{array} \\
X(4260)
\end{gathered}
$$

By threshold enhancements: DD, DD*, $\mathbf{D}_{\mathbf{s}} \mathrm{D}_{\mathrm{s}}, \mathrm{D}^{*} \mathrm{D}^{*}, \mathbf{D}_{\mathrm{s}} \mathrm{D}_{\mathrm{s}}{ }^{*}, \mathrm{D}_{\mathrm{s}}{ }^{*} \mathrm{D}_{\mathrm{s}}{ }^{*}, \boldsymbol{\Lambda}_{\mathrm{c}} \boldsymbol{\Lambda}_{\mathrm{c}}$. By cc resonances: $\boldsymbol{\psi}(\mathbf{3 S}), \boldsymbol{\psi}(2 \mathrm{D}), \boldsymbol{\psi}(4 \mathrm{~S}), \boldsymbol{\psi}(3 \mathrm{D})$.

- data from BaBar, Phys. Rev. Lett. 95, 142001 (2005)
- figure from Evb, GR, JS, Phys. Rev. Lett. 105, 102001 (2010)

4) $X(3872)$ as a unitarised $1^{++} c \bar{c}$ state
\Rightarrow SC, GR, EvB, Eur. Phys. J. C 71 (2011) 1762

- In RSE, bare $2^{3} P_{1} c \bar{c}$ state lies at 3979 MeV ;
- Couple it to $D^{0} D^{* 0}$ and other OZI-allowed channels, as well as to $\omega \mathrm{J} / \psi$ and $\rho^{0} \mathrm{~J} / \psi$;
- $\omega \mathrm{J} / \psi$ and $\rho^{0} \mathrm{~J} / \psi$ channels are smeared out so as to account for the ω and ρ widths, by taking complex ω and ρ masses and reunitarising the S-matrix (see paper in EPJC);
- $D^{0} D^{* 0}$ and $\rho^{0} J / \psi$ data are easily described (see plot on next slide), as well as the $\omega \mathrm{J} / \psi / \rho^{0} \mathrm{~J} / \psi$ branching ratio;
- Corresponding $X(3872)$ pole settles at or slightly below the $D^{0} D^{* 0}$ threshold, with an imaginary part of about $0.1-0.7 \mathrm{MeV}$;
- Peak in $\rho^{0} \mathrm{~J} / \psi$ at $\approx 3872 \mathrm{MeV}$ and cusp-like structure in $D^{0} D^{* 0}$ at $\approx 3874 \mathrm{MeV}$ appear naturally, with no need for an additional state.

5) $D_{1}(2420), D_{1}(2430), D_{s 1}(2536), D_{s 1}(2460)$
$\Rightarrow S C, G R$, EvB, Phys. Rev. D 84 (2011) 094020

- $D_{1}(2420)$ and $D_{1}(2430)$ are almost degenerate in mass, whereas $D_{s 1}(2536)$ and $D_{s 1}(2460)$ are 76 MeV apart;
- $D_{s 1}(2536)$ and $D_{s 1}(2460)$ are very narrow (<2.3 resp. <3.5 $\mathrm{MeV}, D_{1}(2420)$ is narrow ($20-25 \mathrm{MeV}$), and $D_{1}(2430)$ is very broad ($\sim 384 \mathrm{MeV}$);
- No simple quark model, with spin-orbit splitting, can reproduce this pattern of masses and widths;
- Also chiral Lagrangians for heavy-light systems, with chiral loop corrections, fail dramatically, with the loops even worsening the discrepancies.
- Our work: couple bare ${ }^{3} P_{1}$ and ${ }^{1} P_{1} c \bar{q}$ and $c \bar{s}$ systems to the most important OZI-allowed meson-meson channels, in RSE approach;
- Dynamics of equations generates 2 quasi-bound states in the continuum ($D_{1}(2420)$ and $D_{s 1}(2536)$), as well as 2 strongly shifted states ($D_{1}(2430)$ and $D_{s 1}(2460)$); see next slide;
- 8 observables are quite well reproduced with 2 parameters.

Left: $D_{1}(2430)$ pole trajectories.
Right: $D_{s 1}(2460)$ and $D_{s 1}(2536)$.

V. Conclusions

\Rightarrow Meson spectroscopy is in a globally bad shape:

- Many states predicted by the quark model are missing, especially in the charmed, bottom, charmonium, and bottomonium sectors.
- In the light-quark sector, there are very serious discrepancies between several excited states and the Godfrey-Isgur model.
- Other funnel-type models will hardly do much better there.
- As nearly all resonances below 2 GeV are inelastic, there is little hope that lattice QCD will come to rescue in the near future.
- A model with harmonic confinement and flavour-independent spacings of $\approx 380 \mathrm{MeV}$ appears to be favoured below 2 GeV .
- When unquenched, such a model also works for charmonium, bottomonium, and charmed mesons, besides automatically generating the light scalar mesons.
- Dedicated spectroscopy experiments are needed in the $1-2 \mathrm{GeV}$ region, with reliable partial-wave analyses, and no PDG bias. COMPASS might play a significant role here.

