J/ ψ polarization in p-p collisions at $\sqrt{s} = 7$ TeV with the ALICE experiment at the LHC

Livio Bianchi* on behalf of the ALICE Collaboration

Abstract

The first measurement of inclusive J/ ψ polarization at the LHC was carried out in pp collisions at \sqrt{s} = 7 TeV, by the ALICE experiment [1]. Reconstructing J/ ψ in the dimuon channel at forward rapidity (2.5 < y < 4.0), we have measured its polarization to be rather small, with a hint for a non-zero value only for the lowest measured bin in transverse momentum, 2-3 GeV/c, in the helicity reference frame.

ALICE and the Muon Spectrometer

ALICE [10] is the experiment at the LHC specifically dedicated to the study of the hot and dense matter created in ultra-relativistic heavy-ion collisions (QGP).

Muon offset with respect to primary vertex cannot be accurately determined \rightarrow inclusive J/ ψ measurement

Analysis Steps

Bulk part of data collected during 2010 (~100 nb⁻¹)

Fit the corrected spectra with: $W(\cos\theta) \propto \frac{1}{3+\lambda_{\theta}} (1+\lambda_{\theta}\cos^2\theta)$ Correct for $W(\varphi) \propto 1 + \frac{2\lambda_{\varphi}}{3 + \lambda_{\theta}} \cos 2\varphi$ (integration of (1) over ϕ and $cos\theta$ respectively [7])

Signal extracted in the p_t region $2 \div 8$ GeV/c and with the following binning $|\cos\theta|$: [0-0.15], [0.15-0.3], [0.3-0.45], [0.45-0.6], [0.6-0.8] $|\phi|$: [0-0.63], [0.63-0.94], [0.94-1.26], [1.26- π /2]

Acceptance and efficiency evaluated through realistic Monte Carlo. As a starting point FLAT $\cos\theta$ and ϕ input distributions in the simulation.

p_t: [2-3], [3-4], [4-8] GeV/c

Integration of the signal over the angular variables

Need to make an assumption on the polarization set in the MC sample used for acceptance correction \rightarrow **POSSIBLE BIAS!**

An iterative procedure is used: at each step polarization in the MC tuned to the values estimated at the previous step

The procedure converges if at the step *n* the values are the same estimated at the step *n-1*.

Convergence observed after at most 2-3 iterations!

After each step of the iterative procedure the corrected spectra were fitted simultaneously in the two reference frames. The invariance condition:

$$\mathcal{F} = \frac{\lambda_{\theta}^{HE} + 3\lambda_{\phi}^{HE}}{1 - \lambda_{\perp}^{HE}} = \frac{\lambda_{\theta}^{CS} + 3\lambda_{\phi}^{CS}}{1 - \lambda_{\perp}^{CS}}$$

is required in the fit, so that the number of free angular parameters reduces from 4 to 3.

Several sources of systematic uncertainty were investigated: signal extraction, input p_{t} and ydistributions in the MC, $\cos\theta$ fitting range in the lowest p_{t} bin, trigger and tracking efficiency

Reference:

- [1] B. Abelev et al. (ALICE Collaboration), PRL 108 (2012) 082001
- [2] N. Brambilla et al., Eur. Phys. J. C71:1534,2011
- [3] CDF Collaboration, Phys.Rev.Lett.79, 572 (1997)
- [4] J. P. Lansberg, Phys. Lett. B 695 (2011) 149 [5] PHENIX Collaboration, Phys. Rev. Lett. 98 (2007) 232002
- [6] STAR Collaboration, Phys. Rev. C 80 (2009) 041902
- [7] P. Faccioli et al., Eur. Phys. J. C 69:657-673, 2010
- [8] CDF Collaboration, Phys. Rev. Lett. 99 (2007) 132001 [9] PHENIX Collaboration, Phys. Rev. D 82 (2010) 012001
- [10] ALICE Collaboration, 2008 JINST 3 S08002
- [11] M. Butenschön and B. Kniehl, arXiv:1201.3862v1 (2012)
- [12] M. Butenschön and B. Kniehl, arXiv:1109.1476v2 (2011)

Quarkonium Production

Quarkonium hadroproduction is an issue which is still not theoretically understood. Several models on the market [2]. Among them:

- Colour Singlet Model (CSM): heavy quark pair produced in a color singlet state;
- Colour Octet Model (COM): two quarks created in a color octet state and then evolves in a colorless bound state with the emission of soft gluons

The two models are different truncations of the effective field theory called Non-Relativistic QCD (NRQCD) [2].

The CSM-LO was ruled out by the CDF Run I p_{t} differential crosssection [3], while NRQCD described perfectly the shape [2].

Higher order calculations of CSM [4] are approaching the data (PHENIX and STAR [5,6])

J/ψ polarization: how and why

 J/ψ polarization is measured [7] through the study of the angular distribution of the decay products which, taking as a reference the μ^+ , is given by:

$$W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos2\phi + \lambda_{\theta\phi}\sin2\theta\cos\phi) \tag{1}$$

 λ_{θ} is the fundamental parameter, directly affected by polarization:

 $\lambda_0 = +1 \rightarrow \text{transverse polarization}$ $\lambda_0 = 0 \rightarrow \text{no polarization}$ → longitudinal polarization The angular distribution is measured in a given reference frame. Two definitions used:

CSM and NRQCD make different predictions on p_{t} dependence of λ_{0} : COM fails the prediction of CDF Run II measurement [8]

 CSM-NLO makes a better job for Tevatron and Phenix data at midrapidity [4,9]

Results and comparison with theory

Hint $(1.6\sigma \text{ level})$ for longitudinal polarization at very low p_t in the helicity frame. It vanishes at \sim 5 GeV/c

In the Collins-Soper frame λ_{Ω} everywhere compatible with zero (systematically slightly lower)

 λ_{ϕ} compatible with zero in all the explored p_t range

 $\lambda_{\theta\phi}$ assumed to be zero. The assumption was checked a-posteriori to be realistic

NLO full calculations of NRQCD (CSM+COM) and CSM carried out very recently [11,12]. Also a prediction on J/ψ polarization at the LHC energy has been provided:

CAVEAT: curves for direct production, our data for inclusive

Result of the comparison promising.

NRQCD is favored with respect to CSM, especially in the Collins-Soper reference frame, where the strong transverse polarization expected is not observed in our results

Conclusions

ALICE studied inclusive J/ ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV

No significant polarization observed. λ_{ϕ} everywhere compatible with zero, while the λ_{θ} parameter in the helicity frame gives a hint for longitudinal polarization at low p_{t} . In the Collins-Soper frame λ_{0} is compatible with zero in all the p_{t} range, but systematically slightly negative.

The comparison of the results with calculations of NRQCD and CSM at NLO is encouraging and favors the first approach, especially in the Collins-Soper frame.