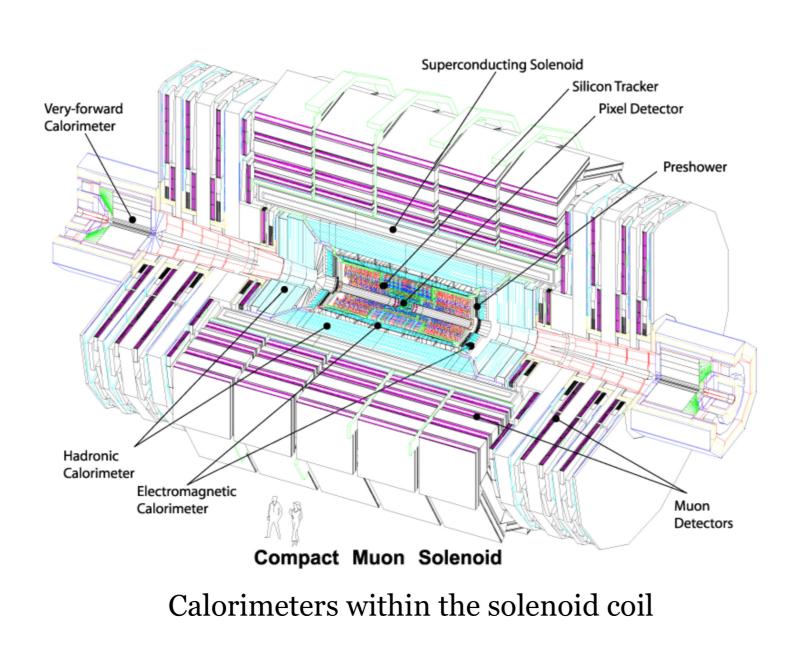
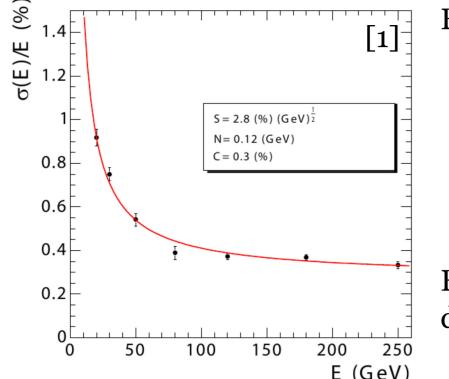

Photon Energy Scale Determination and Commissioning with Radiative Z decays


Olivier Bondu on behalf of the CMS collaboration Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UCB Lyon 1

Introduction: CMS and its electromagnetic calorimeter (ECAL)

CMS (Compact Muon Solenoid) [1] main features:

- Superconducting solenoid: 3.8T magnetic field - Hermetic, compact (14,000 tons; 28.7m x 15m)
- Muon chambers


ECAL designed to be fast, compact, radiation-hard, with fine granularity and excellent energy resolution.

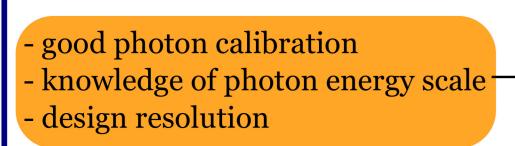
Choice of PbWO4:

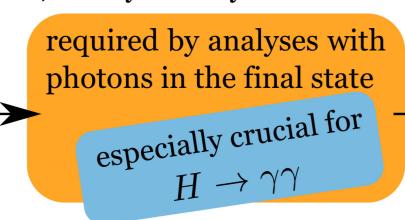
- size chosen so as to contain an entire EM shower (high density: 8.28 g/cm^3 , Xo = 0.89 cm)
- good resolution (homogeneous)
- fast (80% of light emitted in 25ns)
- radiation hard (changes in crystal opacity measured by dedicated laser monitoring system)
- The electromagnetic calorimeter:
- 75,848 PbWO4 scintillating crystals
- Barrel: 36 supermodules of 1,700 crystals each, light converted by APD
- Endcaps: 4 dees of 3662 crystals each, light converted by VPT

Physics performance: motivation for a dedicated photon standard candle

1) ECAL calibration scheme

ECAL resolution from electron test-beams:


 $\frac{\sigma(E)}{E} = \frac{2.8\%}{\sqrt{E(GeV)}} \oplus \frac{0.12\%}{E(GeV)} \oplus 0.3\%$ constant term (C) stochastic component (S) electronic and experimental noise (N)


For photons of energy ~100 GeV ($H o \gamma \gamma$ range), the energy resolution is dominated by the constant term (significant contribution from calibration).

The reconstructed energy of a particle in the ECAL is:

- $E_{e,\gamma} = F_{e,\gamma}(\eta) \cdot \sum$ $G(GeV/ADC) \cdot S_i(T,t) \cdot c_i \cdot A_i$ - A_i : reconstructed amplitude in ADC counts
- c_i : intercalibration constant
- -G: global energy scale
- S_i : correction for crystal transparency loss T as a function of time t
- F: energy correction (depends on the particle type, energy, and pseudo-rapidity; contains the cluster energy corrections)

Different physics channels are available to evaluate the different calibration terms: $\pi^0 \to \gamma \gamma$, $\eta \to \gamma \gamma$, $J/\psi \to e^+e^-, W^\pm \to e^\pm \nu$, $Z^0 \to e^+e^-$, and symmetry around the ϕ -axis of minimum bias events.

differently in the ECAL desire for a dedicated standard candle for photons,

photons and electrons behave

complementary to $Z^0 \rightarrow e^+e^-$

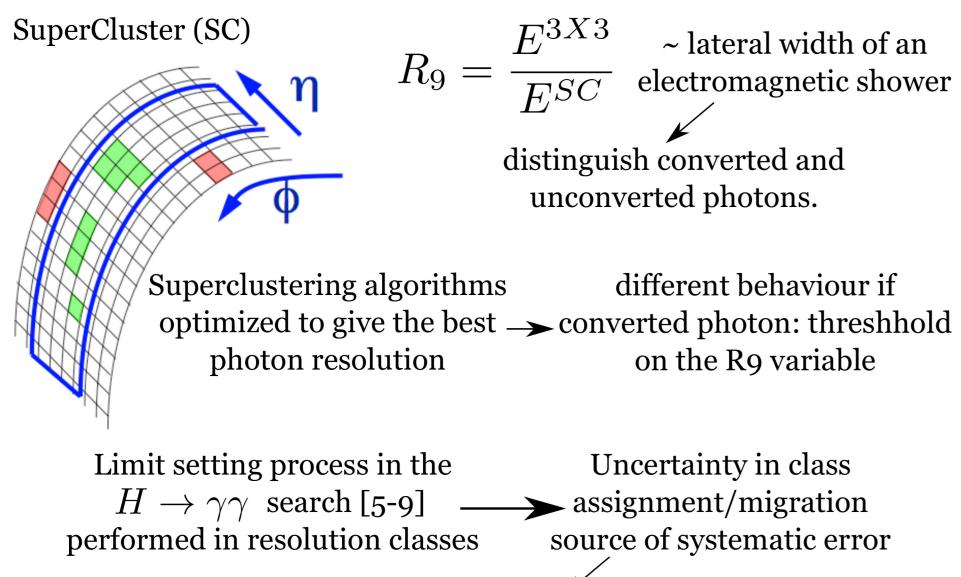
Final State Radiation (FSR) √√√√√√ γ Initial State Radiation (ISR)

2) Radiative Z^0 decays, process selection strategy Z decay to muons with Final State Radiation (FSR):

one of the muons emits a Bremsstrahlung photon Z decay to muons CMS delivers high no other particles Z boson properties known precision measurement in ECAL apart with high accuracy from the photon of muon momentum constraint on photon kinematics (three body decay) purely EWK process: clear and neat signal in hadronic collisions

Selection:

- Standard CMS tight muon ID, without calorimetric isolation - Dimuon invariant mass requirement (rejection of non-radiative Z decays)
- Loose photon object selection (fiducial cuts only, to keep it as unbiased as possible)
- requirement on maximum angular separation between photon and closest muon to reject ISR


[6]

 $\epsilon_{data}/\epsilon_{MC}$

- Three-body invariant mass window
- Source of high-purity photons
- Kinematics are well-constrained by the Z boson mass and the precision on the muon momenta
- steeply falling photon energy spectrum [2]

Results

1) Photon Commissioning: R9

quantified with $Z^0 o \mu\mu\gamma$ events					
Source	Uncertainty [6]				
Photon identification efficiency					
barrel	1.0%				
endcap	2.5%				
$R_9 > 0.94$ efficiency					
(results in class migration) barrel	4%				
endcap	6.5%				
	$R_9 > 0.94$	$R_9 < 0.94$			
Energy resolution $(\Delta \sigma/E_{MC})$					
barrel	0.2%	0.4%			
endcap	0.5%	0.4%			
Energy scale $((E_{data} - E_{MC})/E_{MC})$					
barrel	0.1%	0.4%			
endcap	0.3%	0.4%			

2) Photon Identification: lepton veto

 $Z^0 \rightarrow e^+e^-$ events used to determine the efficiency of the complete selection, with the exception of the electron veto cut

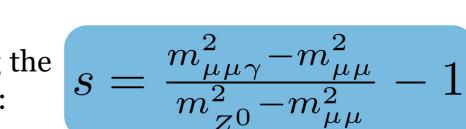
For the $H \rightarrow \gamma \gamma$ analyses efficiency of photon identification imeasured in data using tag-and-probe techniques.

Category

 ϵ_{data} (%)

 $Z^0 o \mu\mu\gamma$ events used to measure the efficiency for photons to pass the electron veto (dimuon system as the tag and photon candidate as the probe)

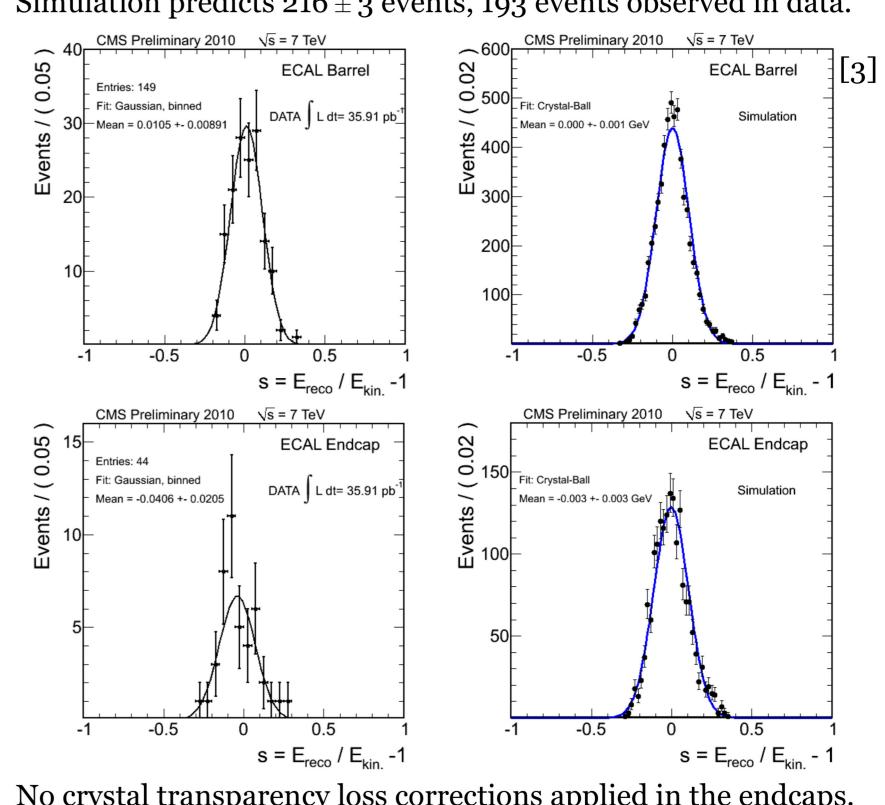
All cuts except electron rejection (from $Z \to ee$)				
1	91.77 ± 0.14	92.43 ± 0.07	0.993 ± 0.002	
$\overline{2}$	72.67 ± 0.43	71.89 ± 0.08	1.011 ± 0.007	
3	80.33 ± 0.47	80.04 ± 0.18	1.004 ± 0.008	
4	57.80 ± 1.26	55.09 ± 0.15	1.049 ± 0.025	
Electron rejection cut (from $Z \to \mu\mu\gamma$)				
1	$99.78^{+0.13}_{-0.16}$	00.50 + 0.13	1.009 ± 0.002	
	99.70 - 0.16	$99.09_{-0.17}$	$1.002_{-0.002}$	
$\frac{1}{2}$	$\begin{array}{ c c c c c c }\hline 99.75_{-0.16} \\ 98.77_{-0.73}^{+0.59} \\ \hline \end{array}$	$99.59^{+0.13}_{-0.17} \\ 97.70^{+0.32}_{-0.37}$	$1.002^{+0.002}_{-0.002} \\ 1.011^{+0.007}_{-0.008}$	
		$99.39_{-0.17} \\ 97.70_{-0.37}^{+0.32} \\ 99.29_{-0.42}^{+0.30} \\ 93.34_{-0.86}^{+0.79}$	$1.002_{-0.002} \\ 1.011_{-0.008}^{+0.007} \\ 1.000_{-0.011}^{+0.006}$	


2012 Students' LHCC Poster Session, March 21st, CERN, Geneva, Switzerland

 ϵ_{MC}

3) Photon Energy Scale measurement

 $s = \frac{E''_{measured}}{-\infty} - 1$: measured offset of the energy scale


Three-body decay kinematics (assuming the muon momenta are perfectly measured):

[4]

 M_{11} [GeV]

Simulation predicts 216 \pm 3 events, 193 events observed in data.

No crystal transparency loss corrections applied in the endcaps.

Photon scale agrees with expectations at the 1% level in EB and 4% in EE. These numbers are within the estimated accuracy of the method, and are found to be consistent between three different methods. This method has been used in V-gamma cross section measurement [4]

Conclusions & Perspectives

The $Z^0 \to \mu\mu\gamma$ channel is the only available Standard Model source of pure high-energy photons. Three current uses of this channel within the CMS collaboration have been presented

Up to now, photon studies relied mainly on Z decays to electrons to examine in detail photon simulation, reconstruction and selection. With the available statistics recorded by CMS during 2011 (~5 /fb), the use of the $Z^0 \to \mu\mu\gamma$ channel will be more effective than $Z^0 \to e^+e^-$. This is of particular importance for $H \to \gamma \gamma$ searches.

[2] CMS Physics Technical Design Report Volume I: Detector Performance and Software, CMS Collaboration, CERN-LHCC-2006-001; CMS-[3] CMS ECAL 2010 performance results, CMS Collaboration, CMS-DP-2011-008 [4] Measurement of W-gamma and Z-gamma production in pp collisions at sqrt(s) = 7 TeV, CMS Collaboration, Phys. Lett. B701 535-555 (2011)

[arXiv:1105.2758 [hep-ex]], CMS-EWK-10-008 [5] Search for a Higgs boson decaying into two photons in the CMS detector, CMS Collaboration, CMS-PAS-HIG-11-010 [6] Search for a Higgs boson decaying into two photons in the CMS detector, CMS Collaboration, CMS-PAS-HIG-11-021 [7] Search for a Higgs boson decaying into two photons in the CMS detector, CMS Collaboration, CMS-PAS-HIG-11-030 [8] Search for the fermiophobic model Higgs boson decaying into two photons, CMS Collaboration, CMS-PAS-HIG-12-002

[9] A search using multivariate techniques for a standard model Higgs boson decaying into two photons, CMS Collaboration, CMS-PAS-HIG-12-001