

2012 Development Plan

Makoto Asai (SLAC) On behalf of the Geant4 Collaboration Geant4 Technical Forum March 27th, 2012

2012 Development Plan

- Detail of proposed 2012 development plan is found at http://geant4.cern.ch/support/planned_features.shtml
- Highlights
 - Geometry
 - Detector responses
 - Generic processes
 - Standard EM physics
 - Low-E EM physics
 - Hadronics
 - Visualization
 - Examples
 - Collaboration-wide
- Supporting platforms for version 9.6
- Longer term developments

Geometry / detector responses / generic process

- Geometry
 - Review of field classes and of design for field accuracy settings
- Detector responses
 - Migration to statistic-double for some quantities of command-based scoring
- Generic process
 - Review, unify and enrich existing biasing options
 - Review interface between processes and tracking for forced-interaction and forced-flight biasing
 - Prototype of (multi-)differential cross-section for process-based biasing and reverse-MC
 - First implementation of phonon physics processes for mK temperature
 - First implementation of electron/hole drift processes for semiconductor

Standard EM / Low-E EM

- Standard EM
 - Improving EM shower shape reproduction
 - Bremsstrahlung angular generator
 - Multiple-scattering
 - Cross sections for gamma processes
 - Optimization of ComputeSafety()
- Low-E EM
 - Atomic de-excitation in Penelope
 - Microdosimetry models in Si
 - Extension of Geant4-DNA Physics models

Hadronic physics

- Replacing CHIPS in production physics lists
 - Stopping model
 - π^{-} , K^{-} , Σ^{-} stopping and capture:
 - Bertini versions now being validated and appear to be better and faster than CHIPS
 - anti-proton stopping and capture:
 - FTF model to replace CHIPS now being validated
 - All CHIPS cross sections currently used in production physics lists to be separated from body of CHIPS code and separately maintained
 - Replace hadronic part of CHIPS gamma-nuclear and electro-nuclear models with Bertini
 - Validation underway
 - EM part (virtual gamma spectrum generation) of electro-nuclear: either
 - extract CHIPS implementation to separately maintained code, or
 - develop new code based on Binary Cascade for virtual gamma spectrum

Visualization / examples

- Visualization
 - New driver to produce image files in batch
 - Full support for visualization of Boolean shapes (*)
 - Integrated visualization of field lines (electric, magnetic, ...) (*)
- Extended examples
 - Review of extended examples to reduce code duplication, apply coding guidelines and rationalize functionalities/features
- Advanced examples
 - Complete review of physics models implemented in all the examples

Collaboration-wide developments

- Performance improvements
 - Design iterations for some kernel classes
 - Cache-hit-rate improvement, reduction of virtual layers, etc.
 - Transparent to user's code (at least for average users)
 - Review physics implementations
- Reproducibility
 - Event/track level full reproducibility
- G4MT
 - A few more alpha releases for every Geant4 patch releases in 2012
 - G4MT v9.5-p01 will be released in two weeks
 - Improving usability in particular for external "frameworks"
 - Split G4ParallelRunManager into two
 - Catching up all performance improvements by design iterations
 - Confirming no performance penalty for single-thread execution
 - G4MT v9.6 at the end of 2012 or early 2013 will be the final alpha release
 - In 2013 we will merge G4MT into the main development repository

Proposed supporting platforms for version 9.6

- SLC5
 - GCC 4.3, (native 4.1)
- SLC6
 - GCC 4.6, 4.7, (native 4.4)
- Mac
 - GCC 4.2.1 or later native compiler
- Windows
 - VC++10

• Proposing to drop 32-bit compiler support for all Linux and Mac

Longer-term developments

- We anticipate version 9.6 at the end of this year will be the final minor release of Geant4 version 9 series.
 - Release of 2013 will be a major release
- Geant4 version X (name t.b.c.)
 - Multi-thread capable
 - Minimal migration cost
 - Still C++
 - Neutral to computing architecture

