The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment

Jeffery T. Mitchell
Brookhaven National Laboratory

and the PHENIX Collaboration

39 GeV Au+Au

7.7 GeV Au+Au
The RHIC Beam Energy Scan Program: Overview

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The RHIC Beam Energy Scan Program: Probing the Nuclear Matter Phase Diagram

By systematically varying the RHIC beam energy, heavy ion collisions will be able to probe different regions of the QCD phase diagram.

PHENIX is searching for signatures of the onset of deconfinement and searching for signatures of the critical point.

Outline:
- Charged Particle Multiplicity
- Transverse Energy
- Multiplicity Fluctuations
- Net Charge Fluctuations
- Pion HBT
- Flow
- R_{AA}
Global Observables: Charged Particle Multiplicity and Transverse Energy Production

Min. Bias

Min. Bias and 5% centrality distributions

Min. Bias

Min. Bias and 5% centrality distributions
Charged Particle Multiplicity

The 200 GeV Au+Au analysis is described in Phys. Rev. C71 (2005) 034908

The particle density increases with increasing collision energy.

There is an increase in particle density for more central collisions at all collision energies.

The Au+Au and U+U particle densities are similar.
Charged Particle Multiplicity: Excitation Function

The red line is a logarithmic fit to all data points excluding the LHC points.

At or below RHIC energies, the multiplicity per participant pair increases linearly with log(\sqrt{s_{NN}}).
Transverse energy production increases with increasing collision energy. There is an increase in transverse energy production for more central collisions at all collision energies. Transverse energy production in Cu+Cu at the same \(N_{\text{part}} \) is similar to that in Au+Au at the same collision energy.
Bjorken Energy Density

New RHIC energy density record in U+U collisions = 6.15 GeV/fm²/c. The upper U+U point is for the upper 1% centrality bin. All other points are 5% centrality bins.

ε_{Bj} increases by a factor of 3.8 when going from 7.7 to 200 GeV.
Monotonic behavior is observed in E_T production in 0-5% central Au+Au collisions. The red line is a logarithmic fit to all points excluding the ALICE point. ε_{BJ} increases by a factor of 11.1 when going from 7.7 GeV to 2.76 TeV.
• There is no significant change in the shape of the centrality-dependence of the particle density or transverse energy from 7.7 GeV Au+Au collisions up to 2.76 TeV Pb+Pb collisions.

• It appears that the collision geometry is driving the centrality dependence.
The transverse energy per charged particle is flat as a function of centrality for all collision energies from 7.7 GeV to 200 GeV.
Transverse Energy per Charged Particle:
Excitation Function

There is very little change in the transverse energy per charged particle from 7.7 GeV to 200 GeV.

There is only a slight increase at LHC energies (16%).
Multiplicity Fluctuations

- Multiplicity fluctuations may be sensitive to divergences in the compressibility of the system near the critical point.

\[\left(\frac{\sigma^2}{<N>} \right) = \omega_{ch} = \frac{<N>}{k_{NBD}} + 1 = k_B T \left(\frac{<N>}{V} \right) k_T \]

\[\omega_N \rightarrow \text{“Scaled Variance”} \]

The scaled variance is quoted within the PHENIX acceptance and has been corrected for contributions from impact parameter fluctuations (\(\omega_{ch,dyn} \)).

The centrality-dependent shape of the fluctuations is primarily driven by contributions from flow.
Multiplicity Fluctuations: Excitation Function

The dashed red line is a constant fit to the PHENIX data only.

No significant increase in multiplicity fluctuations have been observed.

Stay tuned for new results at 19.6 and 27 GeV. It would be interesting to add a point at 15 GeV.
Higher Moments of Net Charge Distributions

The correlation length (ξ) is related to various moments of conserved quantities:

Variance: $\sigma^2 = \langle (N - \langle N \rangle)^2 \rangle \sim \xi^2$

Skewness: $S = \langle (N - \langle N \rangle)^3 \rangle / \sigma^3 \sim \xi^{4.5}$

Kurtosis: $\kappa = \langle (N - \langle N \rangle)^4 \rangle / \sigma^4 - 3 \sim \xi^7$

The quantities $S\sigma$ and $\kappa\sigma^2$ are related to the quark number susceptibilities (χ):

$S\sigma \sim \chi^{(3)}/\chi^{(2)}$ and $\kappa\sigma^2 \sim \chi^{(4)}/\chi^{(2)}$.

Since the correlation length is expected to diverge at the critical point, it is expected that the quantities $S\sigma$ and $\kappa\sigma^2$ will be large there.

Kurtosis \to “bulging”

Black: $\kappa=0$

Red: $\kappa=\infty$
All datasets cover several orders of magnitude.
The skewness and kurtosis trends to increase with decreasing beam energy.

The skewness and kurtosis tends to decrease in more central collisions.
The products of the moments are relatively flat as a function of centrality.
The products of the net charge moments show no significant increase above URQMD, HIJING, or Hadron Resonance Gas predictions.

Stay tuned for new results at 19.6 and 27 GeV.
The R_{out}, R_{side}, and R_{long} all increase with increasing centrality.
There is no significant change in R_{out} and R_{side} vs. $\sqrt{s_{NN}}$ from 39 to 200 GeV.

R_{long} increases with $\sqrt{s_{NN}}$.
The quantity $R_{\text{out}}^* R_{\text{side}}^* R_{\text{long}}$ estimates the pion freeze-out volume, V_f.

The PHENIX data are consistent with the trend displayed by previous results.
Scaling of v_2 and v_3 by the number of constituent quarks is preserved at 62 GeV and 39 GeV.
R_{AA} at 62 GeV is similar to that at 200 GeV.

Strong suppression is still observed at 39 GeV, but it is less than at higher energies. π^0 R_{AA} results at 27 GeV are coming soon.
Summary

New results from 39, 27, 19.6, and 7.7 GeV Au+Au collisions are shown.

- Charged particle multiplicity and transverse energy production tend to scale logarithmically with $\sqrt{s_{NN}}$ up to the top RHIC energy.
- The centrality-dependent shape of multiplicity and transverse energy production shows little change from 7.7 GeV to 2.76 TeV.
- No increases in charged particle multiplicity fluctuations are observed at 7.7 or 39 GeV.
- No significant excess in the moments of net charge are observed above URQMD, HIJING, or Hadron Resonance Gas predictions at 7.7 or 39 GeV.
- The pion freeze-out volume at 62.4 and 39 GeV is consistent with trends established in previous measurements.
- Constituent quark scaling of v_2 holds at 62.4 and 39 GeV.
- Strong suppression is observed at 62.4 and 39 GeV, although less suppression is seen at 39 GeV.

- So far, PHENIX observes no signs of the critical point. Stay tuned for much more soon.
Auxiliary Slides
From the Cu+Cu energy scan:

- Significant suppression at $\sqrt{s_{NN}} = 200$ and 62.4 GeV
- Moderate enhancement at $\sqrt{s_{NN}} = 22.4$ GeV
\(\pi^0 R_{AA} \) as a function of \(p_T \) in PHENIX at \(\sqrt{s_{NN}} = 39, 62 \) and 200 GeV.

- Still observe a strong suppression (factor of 2) in the most central \(\sqrt{s_{NN}} = 39 \) GeV collisions.
- \(R_{AA} \) from \(\sqrt{s_{NN}} = 62 \) GeV data is comparable with the \(R_{AA} \) from \(\sqrt{s_{NN}} = 200 \) GeV for \(p_T \geq 6 \) GeV/c.
- Peripheral \(\sqrt{s_{NN}} = 62 \) and 200 GeV data show suppression, but the \(\sqrt{s_{NN}} = 39 \) GeV does not.
Elliptic Flow at 62 and 39 GeV: π^0

There is little change in the magnitude of v_2 from 39 GeV to 200 GeV.
The magnitude of v_2 at 7.7 GeV is significantly lower than the magnitudes at 39, 62 and 200 GeV.