Two particle correlation measurements with respect to higher harmonic event planes at PHENIX

Takahito Todoroki for the PHENIX Collaboration University of Tsukuba & RIKEN Nishina Center Quark Matter 2012, Washington D.C., U.S.A.

Motivations

Dissect possible interplay between hardscattered partons and hot dense medium

- Have definitive answer on what remains in correlations after v_n background subtractions
- Test path length dependence of parton energy loss via correlations relative to higher harmonic event planes

Correlations and flow harmonics v_n at PHENIX

Two particle correlations

 \gg Mid-rapidity hadrons, without η gap where jet contribution remains

Charged Hadron v_n and background shape in correlations

- Input to v_n background subtractions Event plane $\Phi_n = |\eta| = 1.0^{-2.8}$
- Flow background shape

Flow =
$$b_0 \left\{ 1 + \sum_{i=1}^{\infty} 2v_i^t v_i^a \cos\left(n\Delta\phi\right) \right\}$$

Correlations in fine centrality steps with various v_n background subtractions by ZYAM

0.1 0.00 $\frac{0.05}{9} = 0.05 = 0$ 0.05 $\begin{array}{c} 0.05 \\ 0.15 \\ 0.$ $\begin{array}{c} 0 & 0.081 \\ 0.05 & 0.05 \\ 0.05 & 0.05 \\ 0.15 & 0.05 \\ 0.05 & 0.05$ $\begin{array}{c} 0.1 \\ 0.1 \\ 0.05 \\ 0.0$ Double hump almost gong in mid central 0.1 $4^{0}z$ $3^{4}z$ $4^{5}z$ $4^{5}z$ 4 $0.05 - 10^{-12}$

\mathbf{v}_1 estimations by two methods

Event plane method

 $v_1 = <\cos 1(\phi - \Psi_1) >$

- Two particle correlation method
 - \gg Correlations with ID $\eta|{>}0.5$
 - » Fourier decomposition

Two methods provide two different amplitude v₁

Quark Matter 2012

0.05 $2^{30.45}_{1.45}$ Au+Au 200GeV, $p_T^t \otimes p_T^a = 2.4 \otimes 1.2$ GeV, $\begin{array}{c} 10^{\circ} \\ 10^{\circ} \\ 0.05$ 01_0-<u></u>]₩<u>₹</u> $\begin{array}{c} \mathbf{2} \mathbf{1} \mathbf{1} \mathbf{2} \mathbf{1} \mathbf{2}$ $\begin{array}{c} 0.05 \\ 3.45 \\ 3.45 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.11 \\ 2 \\ 3 \\ 4 \\ 0.05 \\ 0.11 \\ 2 \\ 3 \\ 4 \\ 0.05 \\ 0.11 \\ 2 \\ 3 \\ 4 \\ 0.05 \\ 0.11 \\ 2 \\ 3 \\ 4 \\ 0.05 \\ 0.11 \\ 0.05 \\ 0.0$ Constimmed 3 4 5 0 0 1 2 9 45 05

Correlations relative to $\Psi_2 \& \Psi_3$

- Rapidity gap between trigger and event planes
 » Reduce autocorrelations of jet itself
- Control parton path length (mainly Ψ_2)
- Sensitivity of correlations to different harmonic event planes

Parton path length in Left/Right correlations

- Left/Right trigger selection relative to event plane results in non-uniform path length at away-side
- Modification expected in away-side as Left/Right asymmetry

17 Aug 2012

Quark Matter 2012

- What is the implication of observed Left/Right asymmetry?
- Path length dependence of jet modification?
- Flow function has left/right asymmetry
 - » Subtracted results has ambiguity in flow subtractions?
 - » Additional jet-flow coupling?

17 Aug 2012

Quark Matter 2012

Summary

Correlations with v_n background subtractions

- Treatment of v_4 is crucial for away-side residual shapes at intermediate p_T
- Effect of v₁ is not so significant in symmetric collision systems at mid-rapidity

Correlations relative to higher harmonic event planes

- On correlation shapes depending on Ψ_n
- $\gg \Psi_2$ dependent correlations show clear trigger dependence
- $\gg \Psi_3$ dependent correlations are independent of trigger direction within systematics

Further understanding of reaction plane dependence & Left/Right asymmetry will inform interpretation of inclusive correlations

- Plenary talks
 - M. Wysocki (Mon, Initial state, Global & Collective Dymanics)
 - M. McCumber (Tue, Jets)
 - M. Rosati (Tue, *Heavy Flavor*)
 - I. Tserruya (Thu, Quarkonia, Real & Virtual Photons)
 - E. O'Brien (Fri, *Exploring the QCD Phase Diagram*)
- Parallel talks (Tue)
 - T. Niida (Correlations & Fluctuations, Parallel #3)
 - Y. Gu (Global & Collective Dynamics, Parallel #1)
 - J. Frantz (*Jets, Parallel* #2)
 - D. McGlinchey (*Heavy Flavor & Quarkonia, Parallel #4*)
- Parallel talks (Wed)
 - E. Atomssa (*Electro-Weak Probes, Parallel* #7)
 - M. Kurosawa (Global & Collective Dynamics Parallel #5)

- B. Sahlmueller (*Pre-Equilibrium & Initial State, Parallel #8*)
- S. Huang (Global & Collective Dynamics Parallel #5)
- Parallel talks (Thu)
 - P. Shukula (*High pT and Jets, Parallel* #11)
- Parallel talks (Fri)
 - J. Haggerty (*New Experimental Developments, Parallel #15*)
 - R. Nouicer (*Heavy Flavor & Quarkonia*, Parallel #13)
 - J. Seele (New Experimental Developments, Parallel #15)
 - T. Todoroki (*Correlations & Fluctuations,*,*Parallel #16*)
 - R. Hollis (Correlations & Fluctuations,,Parallel #16)
 - J. Mitchell (*Exploring the QCD Phase Diagram, Parallel* #14)

And, Many posters

38

2012-08-13

T. Sakaguchi, QM2012@Washington D.C.

Backup Slides

Ψ_n resolutions & Ψ_i - Ψ_j correlations

PRL.107.252301

v₁ by event plane method

- » Inclusive measurements of v_1 over η compensate signal due to opposite sign of v_1 in forward/backward rapidity
- \gg Flipping of Ψ_1 and ϕ to keep v_1 signal

v₁ by two particle correlation method

- Two particle correlation method
- » Correlations with $|\Delta \eta| > 0.5$
- » Decomposed by Fourier fitting & extract $v_1^{tr*}v_1^{as}$

Correlations relative to Ψ_2 & Ψ_3 , 0-10%

Correlations relative to $\Psi_2 \& \Psi_3$ 10-20%

Correlations relative to Ψ_2 & Ψ_3 20-30%

Correlations relative to Ψ_2 & Ψ_3 30-40%

Correlations relative to Ψ_2 & Ψ_3 , 40-50%

