PH思ENIX

Detailed HBT measurement with respect to Event plane and collision energy in Au＋Au collisions

Takafumi Niida for the PHENIX Collaboration
University of Tsukuba
Quark Matter 2012

outline

■ Introduction of HBT
■ Azimuthal HBT w.r.t v_{2} plane
■ Azimuthal HBT w.r.t v_{3} plane

- Low energy at PHENIX
- Summary

What is HBT?

■ Quantum interference between two identical particles

- Hadron HBT can measure the source size at freeze-out (not whole size but homogeneity region in expanding source)

$$
\begin{aligned}
& C_{2}=\frac{P\left(\vec{p}_{1}, \vec{p}_{2}\right)}{P\left(\vec{p}_{1}\right) \cdot P\left(\vec{p}_{2}\right)} \quad \begin{array}{l}
\mathrm{P}\left(\mathrm{p}_{1}\right) \\
\mathrm{P}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right): \text { Probability of detecting pair particles }
\end{array} \\
& =1+|\widetilde{\rho}(q)|^{2}=1+\exp \left(-R_{i n v}^{2} q_{i n v}^{2}\right) \\
& \text { assuming gaussian source }
\end{aligned}
$$

3D HBT radii

■ "Out-Side-Long" system
\diamond Bertsch-Pratt parameterization
■ Core-halo model
\triangleleft Particles in core are affected by coulomb interaction

$$
\begin{aligned}
C_{2}= & C_{2}^{\text {core }}+C_{2}^{\text {halo }} \\
& =N[\lambda(1+G) F]+[1-\lambda] \\
G= & \exp \left(-R_{\text {inv }}^{2} q_{\text {inv }}^{2}\right) \\
= & \exp \left(-R_{\text {side }}^{2} q_{\text {side }}^{2}-R_{\text {out }}^{2} q_{\text {out }}^{2}-R_{\text {long }}^{2} q_{\text {long }}^{2}-2 R_{\text {os }}^{2} q_{\text {side }} q_{\text {out }}\right)
\end{aligned}
$$

$\mathbf{R}_{\text {long }}:$ Longtudinal size
$\mathbf{R}_{\text {side }}:$ Transverse size
$\mathbf{R}_{\text {out }}:$ Transverse size + emission duration
$\mathbf{R}_{\text {os }}:$ Cross term between Out and Side

Measurement by PHENIX Detectors

Azimuthal HBT w.r.t \mathbf{v}_{2} plane

Initial spatial eccentricity

■ Final eccentricity can be measured by azimuthal HBT
\diamond It depends on initial eccentricity, pressure gradient, expansion time, and velocity profile, etc.
\diamond Good probe to investigate system evolution

Eccentricity at freeze-out

$\square \quad \varepsilon_{\text {final }} \approx \varepsilon_{\text {initial }} / \mathbf{2}$ for pion
\diamond Indicates that source expands to in-plane direction, and still elliptical shape
\triangleleft PHENIX and STAR results are consistent

- $\varepsilon_{\text {final }} \approx \varepsilon_{\text {initial }}$ for kaon
\triangleleft Kaon may freeze-out sooner than pion because of less cross section
\triangleleft Need to check the difference of m_{T} between π / K ?

m_{T} dependence of $\varepsilon_{\text {final }}$

■ $\varepsilon_{\text {final }}$ of pions increases with m_{T} in most/mid-central collisions

- There is still difference between π / K for mid-central collisions even in same m_{T}
\diamond Indicates sooner freeze-out time of K than π ?

$\mathbf{m}_{\mathbf{T}}$ dependence of relative amplitude

- Relative amplitude of $R_{\text {out }}$ in $\mathbf{0 - 2 0 \%}$ doesn't depend on \mathbf{m}_{T}
\diamond Does it indicate emission duration between in-plane and out-ofplane is different at low m_{T} ?

Azimuthal HBT w.r.t v_{3} plane

Initial spatial fluctuation (triangularity)

Momentum anisotropy triangular flow \mathbf{v}_{3}

- Final triangularity could be observed by azimuthal HBT w.r.t v_{3} plane $\left(\Psi_{3}\right)$ if it exists at freeze-out \diamond Related to initial triangularity, v_{3}, and expansion time, etc.
\diamond Detailed information on space-time evolution can be obtained

Centrality dependence of \mathbf{v}_{3} and ε_{3}

- Weak centrality dependence of \mathbf{v}_{3}

■ Initial ε_{3} has centrality dependence

- Final ε_{3} has any centrality dependence?

	ε_{3}	V_{4} - $\mathrm{p}_{\mathrm{T}}=2-2.5(\mathrm{GeV} / \mathrm{c})$ - $p_{T}=0.75-1(\mathrm{GeV} / \mathrm{c})$

Azimuthal HBT radii w.r.t Ψ_{3}

PHENIX Preliminary
$\mathrm{Au}+\mathrm{Au} 200 \mathrm{GeV} \pi^{+} \pi^{+} \& \pi^{-} \pi^{-}$
$-0-10 \%$
$-10-20 \%$
$\rightarrow-20-30 \%$
$\rightarrow 30-60 \%$

- $R_{\text {side }}$ is almost flat

■ $R_{\text {out }}$ have a oscillation in most central collisions

Comparison of $2^{\text {nd }}$ and $3^{\text {rd }}$ order component

- In $\mathbf{0 - 1 0 \%}, \mathbf{R}_{\text {out }}$ have stronger oscillation for $\boldsymbol{\Psi}_{\mathbf{2}}$ and $\boldsymbol{\Psi}_{3}$ than $\mathbf{R}_{\text {side }}$ \diamond Its oscillation indicates different emission duration between $0^{\circ} / 60^{\circ}$ w.r.t Ψ_{3}

for w.r.t Ψ_{2} and w.r.t Ψ_{3}

PH\%ENIX
preliminary
Au+Au 200GeV 0-10\%
$\pi^{+} \pi^{+}+\pi^{-\pi} \pi^{-}$
$\bullet-$ w.r.t Ψ_{2}
\rightarrow w.r.t Ψ_{3}

Rout

Rside

Triangularity at freeze-out

■ Relative amplitude is used to represent "triangularity" at freeze-out

${ }_{3}$ Triangular component at freeze-out seems to vanish for all centralities within systematic error

Spatial anisotropy by Blast wave model

Blast wave fit for spectra \& $\mathbf{v}_{\mathbf{n}}$

\diamond Parameters used in the model
T_{f} : temperature at freeze-out
ρ_{0} : average velocity
$\boldsymbol{\rho}_{\mathrm{n}}$: anisotropic velocity
\mathbf{s}_{n} : spatial anisotropy
$\checkmark \mathrm{s}_{2}$ and s_{3} correspond to final eccentricity and triangularity

Poster, Board \#195 Sanshiro Mizuno

Initial vs Final spatial anisotropy

Similar results with HBT

Image of initial/final source shape

initial

final

Low energy at PHENIX

■ No significant change beyond systematic error in 200 GeV , 62 GeV and 39 GeV for centrality and m_{T} dependence

Volume vs Multiplicity

- Product of 3D HBT radii shows the volume of homogeneity regions

Poster, Board \#246
■ Consistent with global trends
Alex Mwai

Summary

- Azimuthal HBT radii w.r.t $\mathbf{v}_{\mathbf{2}}$ plane
\triangleleft Final eccentricity increases with increasing m_{T}, but not enough to explain the difference between π / K
Difference may indicate faster freeze-out of K due to less cross section \diamond Relative amplitude of $R_{\text {out }}$ in $0-20 \%$ doesn't depend on m_{T}

It may indicate the difference of emission duration between in-plane and out-of-plane

- Azimuthal HBT radii w.r.t v_{3} plane
\diamond First measurement of final triangularity have been presented.
It seems to vanish at freeze-out by expansion.
\checkmark while Rout clearly has finite oscillation in most central collisions
It may indicate the difference of emission duration between $\Delta \varphi=0^{\circ} / 60^{\circ}$ direction
■ Low energy in Au+Au collisions
\triangleleft No significant change between 200, 62 and 39 [GeV]
\diamond Volume is consistent with global trends

Thank you for your attention!

Japanese rice ball has just "triangular shape" !!

Relative amplitude of HBT radii

■ Relative amplitude is used to represent "triangularity" at freeze-out
■ Relative amplitude of Rout increases with increasing Npart

is Triangular component at freezeout seems to vanish for all centralities(within systematic error)

PHENIX Preliminary

Au+Au 200GeV

Higher harmonic event plane

- Initial density fluctuations cause higher harmonic flow $\mathbf{v}_{\mathbf{n}}$
- Azimuthal distribution of emitted particles:

$$
\begin{aligned}
\frac{d N}{d \phi} \propto 1 & +2 v_{2} \cos 2\left(\phi-\Psi_{2}\right) \\
& +2 v_{3} \cos 2\left(\phi-\Psi_{3}\right) \\
& +2 v_{4} \cos 2\left(\phi-\Psi_{4}\right) \\
v_{n}= & \left\langle\cos n\left(\phi-\Psi_{n}\right)\right\rangle
\end{aligned}
$$

Ψ_{n} : Higher harmonic event plane
φ : Azimuthal angle of emitted particles

Charged hadron v_{n} at PHENIX

PRL.107.252301

- $\mathbf{v}_{\mathbf{2}}$ increases with increasing centrality, but v3 doesn't
- v_{3} is comparable to \mathbf{v}_{2} in 0-10\%
- \mathbf{v}_{4} has similar dependence to \mathbf{v}_{2}

v_{3} breaks degeneracy

■ \mathbf{v}_{3} provides new constraint on hydro-model parameters
\triangleleft Glauber \& $4 \pi \eta / s=1$: works better
४ KLN \& 4 $4 \mathrm{~m} / \mathrm{s}=2$: fails

Azimuthal HBT radii for kaons

■ Observed oscillation for $\mathbf{R}_{\text {side }}, \mathbf{R}_{\text {out }}, \mathbf{R}_{\text {os }}$
■ Final eccentricity is defined as $\varepsilon_{\text {final }}=\mathbf{2} \mathbf{R}_{\mathrm{s}, 2} / \mathbf{R}_{\mathrm{s}, 0}$
$\diamond R_{s, n}^{2}=\left\langle R_{s, n}^{2}(\Delta \phi) \cos (n \Delta \phi)\right\rangle \operatorname{PRC70} 044907$ (2004)
in-plane

\mathbf{k}_{T} dependence of azimuthal pion HBT radii in 20-60\%

■ Oscillation can be seen in R_{s}, R_{o}, and $R_{o s}$ for each $k T$ regions

\mathbf{k}_{T} dependence of azimuthal pion HBT radii in 0-20\%

The past HBT Results for charged pions and kaons

- Centrality / m_{T} dependence have been measured for pions and kaons
\triangleleft No significant difference between both species

Analysis method for HBT

- Correlation function

$$
C_{2}=\frac{R(q)}{M(q)}
$$

\diamond Ratio of real and mixed q-distribution of pairs q : relative momentum

- Correction of event plane resolution \triangleleft U.Heinz et al, PRC66, 044903 (2002)
- Coulomb correction and Fitting
\diamond By Sinyukov's fit function
\triangleleft Including the effect of long lived resonance decay

$$
\begin{aligned}
C_{2}= & C_{2}^{\text {core }}+C_{2}^{\text {halo }} \\
& =N[\lambda(1+G) F]+[1-\lambda] \\
G= & \exp \left(-R_{\text {side }}^{2} q_{\text {side }}^{2}-R_{\text {out }}^{2} q_{\text {out }}^{2}-R_{\text {long }}^{2} q_{\text {long }}^{2}-2 R_{\text {os }}^{2} q_{\text {side }} q_{\text {out }}\right)
\end{aligned}
$$

Azimuthal HBT radil for pions

- Observed oscillation for $\mathrm{R}_{\text {side }}, \mathrm{R}_{\text {out }}, \mathrm{R}_{\text {os }}$
- Rout in 0-10\% has oscillation
\triangleleft Different emission duration between in-plane and out-of-plane?

$$
\begin{aligned}
& \mathrm{Au}+\mathrm{Au} 200 \mathrm{GeV} \pi^{+} \pi^{+}+\pi^{-} \pi^{-} \\
& 0-10 \% \\
&= 10-20 \% \\
& \Delta 20-30 \% \\
& \nabla 30-60 \%
\end{aligned}
$$

Model predictions

Blast-wave model

AMPT

Both models predict weak oscillation will be seen in $\mathbf{R}_{\text {side }}$ and $\mathbf{R}_{\text {out }}$.

