

Detailed HBT measurement with respect to Event plane and collision energy in Au+Au collisions

Takafumi Niida for the PHENIX Collaboration University of Tsukuba

Quark Matter 2012

outline

- Introduction of HBT
- Azimuthal HBT w.r.t v₂ plane
- Azimuthal HBT w.r.t v₃ plane
- Low energy at PHENIX
- Summary

What is HBT ?

Quantum interference between two identical particles

Hadron HBT can measure the source size at freeze-out (not whole size but homogeneity region in expanding source)

3D HBT radii

- "Out-Side-Long" system
- Bertsch-Pratt parameterization

Core-halo model

 Particles in core are affected by coulomb interaction

 $C_2 = C_2^{core} + C_2^{halo}$

=
$$N[\lambda(1+G)F]+[1-\lambda]$$

 $G = \exp(-R_{inv}^2 q_{inv}^2)$

$$= \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - 2R_{os}^{2}q_{side}q_{out})$$

Measurement by PHENIX Detectors

Azimuthal HBT w.r.t v₂ plane

Initial spatial eccentricity

Final eccentricity can be measured by azimuthal HBT

It depends on initial eccentricity, pressure gradient, expansion time, and velocity profile, etc.

♦Good probe to investigate system evolution

Eccentricity at freeze-out

ε_{final}≈ ε_{initial}/2 for pion

Indicates that source expands to in-plane direction, and still elliptical shape
 PHENIX and STAR results are consistent

ε_{final}≈ε_{initial} for kaon

♦ Kaon may freeze-out sooner than pion because of less cross section

 \Rightarrow Need to check the difference of m_T between π/K ?

m_T dependence of ε_{final}

- ε_{final} of pions increases with m_T in most/mid-central collisions
- There is still difference between π/K for mid-central collisions even in same m_{τ}

 \diamond Indicates sooner freeze-out time of K than π ?

m_T dependence of relative amplitude

Relative amplitude of R_{out} in 0-20% doesn't depend on m_T

 \diamond Does it indicate emission duration between in-plane and out-ofplane is different at low m_T?

Azimuthal HBT w.r.t v₃ plane

Final triangularity could be observed by azimuthal HBT w.r.t v₃ plane(Ψ₃) if it exists at freeze-out

 \diamond Related to initial triangularity, v₃, and expansion time, etc. \diamond Detailed information on space-time evolution can be obtained

Centrality dependence of v_3 and ε_3

Azimuthal HBT radii w.r.t Ψ₃

- R_{side} is almost flat
- R_{out} have a oscillation in most central collisions

Comparison of 2nd and 3rd order component

- In 0-10%, R_{out} have stronger oscillation for Ψ_2 and Ψ_3 than R_{side}
 - \diamond Its oscillation indicates different emission duration between 0°/60° w.r.t Ψ_3

Triangularity at freeze-out

Relative amplitude is used to represent "triangularity" at freeze-out

Triangular component at freeze-out seems to vanish for all centralities within systematic error

Spatial anisotropy by Blast wave model

Image of initial/final source shape

Low energy at PHENIX

No significant change beyond systematic error in 200GeV, 62GeV and 39GeV for centrality and m_T dependence

Volume vs Multiplicity

Product of 3D HBT radii shows the volume of homogeneity regions

Summary

Azimuthal HBT radii w.r.t v₂ plane

- \Rightarrow Final eccentricity increases with increasing m_T, but not enough to explain the difference between π/K
 - Difference may indicate faster freeze-out of K due to less cross section
- \diamond Relative amplitude of R_{out} in 0-20% doesn't depend on m_T
 - It may indicate the difference of emission duration between in-plane and out-of-plane

Azimuthal HBT radii w.r.t v₃ plane

- First measurement of final triangularity have been presented.
 It seems to vanish at freeze-out by expansion.
- ♦ while Rout clearly has finite oscillation in most central collisions
 - It may indicate the difference of emission duration between Δφ=0°/60° direction

Low energy in Au+Au collisions

♦No significant change between 200, 62 and 39 [GeV]

♦ Volume is consistent with global trends

Thank you for your attention!

Japanese rice ball has just "triangular shape" !!

Back up

Relative amplitude of HBT radii

Relative amplitude is used to represent "triangularity" at freeze-out
 Relative amplitude of Rout increases with increasing Npart

Triangular component at freezeout seems to vanish for all centralities(within systematic error)

PHENIX Preliminary

Au+Au 200GeV

 $\pi^{+}\pi^{+}+\pi^{-}\pi^{-}$

Higher harmonic event plane

- Initial density fluctuations cause higher harmonic flow v_n
- Azimuthal distribution of emitted particles:

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2) + 2v_3 \cos 2(\phi - \Psi_3) + 2v_4 \cos 2(\phi - \Psi_3) + 2v_4 \cos 2(\phi - \Psi_4)$$
$$w_n = \left\langle \cos n(\phi - \Psi_n) \right\rangle$$

 Ψ_n : Higher harmonic event plane ϕ_{-} : Azimuthal angle of emitted particles

Charged hadron v_n at PHENIX

PRL.107.252301

- v₂ increases with increasing centrality, but v3 doesn't
- v₃ is comparable to v₂ in 0-10%
- v₄ has similar dependence to v₂

v₃ breaks degeneracy

v₃ provides new constraint on hydro-model parameters

 \diamond Glauber & $4\pi\eta/s=1$: works better

 \Rightarrow KLN & $4\pi\eta/s=2$: fails

Azimuthal HBT radii for kaons

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Final eccentricity is defined as ε_{final} = 2R_{s,2} / R_{s,0}

 $\Rightarrow R_{s,n}^2 = \left\langle R_{s,n}^2(\Delta\phi)\cos(n\Delta\phi) \right\rangle \text{ PRC70, 044907 (2004)}$

k_T dependence of azimuthal pion HBT radii in 20-60%

Oscillation can be seen in R_s, R_o, and R_{os} for each kT regions

k_T dependence of azimuthal pion HBT radii in 0-20%

28

The past HBT Results for charged pions and kaons

Centrality / m_T dependence have been measured for pions and kaons

♦ No significant difference between both species

Analysis method for HBT

Correlation function

$$C_2 = \frac{R(q)}{M(q)}$$

Ratio of real and mixed q-distribution of pairs
 q: relative momentum

Correction of event plane resolution

U.Heinz et al, PRC66, 044903 (2002)

Coulomb correction and Fitting

- By Sinyukov's fit function
- Including the effect of long lived resonance decay

$$C_2 = C_2^{core} + C_2^{halv}$$

=
$$N[\lambda(1+G)F] + [1-\lambda]$$

$$G = \exp(-R_{side}^2 q_{side}^2 - R_{out}^2 q_{out}^2 - R_{long}^2 q_{long}^2 - 2R_{os}^2 q_{side} q_{out})$$

Azimuthal HBT radii for pions

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Rout in 0-10% has oscillation

Different emission duration between in-plane and out-of-plane?

Model predictions

Both models predict weak oscillation will be seen in R_{side} and R_{out.}