Non-linear flow response and plane correlations

Li Yan

Department of Physics and Astronomy

Stony Brook University

Quark Matter 2012
August 14, 2012

In collaboration with Derek Teaney

Outline

Initial state fluctuations + Event-By-Event hydro give

- Harmonic flow: v_2, v_3, etc.
- Correlations of reaction plane in final state.

Can we understand E-B-E hydro?
Initial state fluctuations + Event-By-Event hydro give

- Harmonic flow: v_2, v_3, etc.
- Correlations of reaction plane in final state.

Can we understand E-B-E hydro?

1. Cumulant formalism for initial geometry with fluctuations.
3. Reaction-plane correlations of final state (ATLAS results).
Outline

Initial state fluctuations + Event-By-Event hydro give

- Harmonic flow: v_2, v_3, etc.
- Correlations of reaction plane in final state.

Can we understand E-B-E hydro.?

1. Cumulant formalism for initial geometry with fluctuations.
3. Reaction-plane correlations of final state (ATLAS results).

\[\text{Initial correlations} + \text{Flow response} = \text{Reaction place correlations} \]

\[\text{Initial state(cumulants)} + \text{Linear & Non-linear} = \text{Final state} \]
Cumulants for initial state: (not moments!)

Fluctuations in initial state as corrections:

$\rho(x, y) = \text{Gaussian} + 1\text{st cumulant} + 3\text{rd cumulant} + 4\text{th cumulant} + \ldots$

- Cumulant expansion:

$$\rho(x, y) = \text{Gaussian} + 1\text{st cumulant} + 3\text{rd cumulant} + 4\text{th cumulant} + \ldots$$

- 4th Cumulant determines eccentricity C_4 and participant angle Φ_4.

$$C_4 e^{4i\Phi_4} = -\left\langle \frac{1}{r^4} \right\rangle \left\langle r^4 e^{i4\phi_r} \right\rangle - 3\left\langle r^2 e^{i2\phi_2} \right\rangle^2$$

4th cumulant ϵ_4: moments def. subtract ϵ_2^2

e.g. Gaussian with ϵ_2 has $C_4 = 0$, but $\epsilon_4 \propto \epsilon_2^2 \neq 0$.

- Why we use cumulants: avoid double counting in initial conditions.

We define all geometric deformations, i.e. (C_n, Φ_n), with cumulants.
Non-linear response formalism (n=5 for example)

Flow generation in hydro:

\[v_5 e^{-i5\Psi_5} = \frac{w_5}{C_5} \times C_5 e^{-i5\Phi_5} \]

final state

linear resp.

initial state

\[v_5 \sim (\text{linear}) + (\text{non-linear}) + (\text{interference} \propto \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5)) . \]

\[^1\text{U. Heinz and Z. Qiu, and Gardim et al.}\]
Non-linear response formalism (n=5 for example)

Flow generation in hydro:

\[v_5 e^{-i5\Psi_5} = \frac{w_5}{C_5} \times C_5 e^{-i5\Phi_5} \]

final state \quad \text{linear resp.} \quad \text{initial state}

\[1\text{linear resp. fails for } n \geq 4\]

\[1\text{U. Heinz and Z. Qiu, and Gardim et al.}\]
Non-linear response formalism (n=5 for example)

Flow generation in hydro:

\[
\nu_5 e^{-i5\psi_5} = \frac{w_5}{C_5} \times C_5 e^{-i5\Phi_5} + \frac{w_5(23)}{\varepsilon_2\varepsilon_3} \times \varepsilon_2\varepsilon_3 e^{-i(3\Phi_3+2\Phi_2)}
\]

1 linear resp. fails for \(n \geq 4\)

- Assume non-linear flow response to \(\varepsilon_2\varepsilon_3\).

1 U. Heinz and Z. Qiu, and Gardim et al.
Non-linear response formalism (n=5 for example)

Flow generation in hydro:

\[v_5 e^{-i5\Psi_5} = \frac{w_5}{C_5} \times C_5 e^{-i5\Phi_5} + \frac{w_5(23)}{\varepsilon_2\varepsilon_3} \times \varepsilon_2\varepsilon_3 e^{-i(3\Phi_3+2\Phi_2)} \]

- \(w_5 \) \(C_5 \) \(\varepsilon_2 \) \(\varepsilon_3 \)

\[\varepsilon_2 \varepsilon_3 \]

\[\Phi_3 \]

\[\Phi_2 \]

1. Linear response fails for \(n \geq 4 \)

- Assume non-linear flow response to \(\varepsilon_2\varepsilon_3 \).

1. U. Heinz and Z. Qiu, and Gardim et al.
Non-linear response formalism (n=5 for example)

Flow generation in hydro:

\[v_5 e^{-i5\Psi_5} = \left(w_5 \frac{C_5}{c_1} \right) e^{-i5\Phi_5} + \left(\frac{w_5(23)}{\varepsilon_2\varepsilon_3} \right) e^{-i(3\Phi_3 + 2\Phi_2)} \]

1. Linear response fails for \(n \geq 4 \)

- Assume non-linear flow response to \(\varepsilon_2\varepsilon_3 \).

- Calculations of \(v_n \{2\} \): flow from two-particle correlation.

\[v_5 \{2\} = \left\langle \left| w_5 e^{-i5\Phi_5} + w_5(23) e^{-i(3\Phi_3 + 2\Phi_2)} \right|^2 \right\rangle^{1/2} \]

\[v_5 \sim (\text{linear}) + (\text{non-linear}) + (\text{interference } \propto \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5)) \]

1 U. Heinz and Z. Qiu, and Gardim et al.
Non-linear response dependence on p_T

w_4 and $w_{4(22)}$

w_5 and $w_{5(23)}$

- Small p_T: non-linear response is not distinguishable from linear response.
- Large p_T: linear response $\propto p_T$, non-linear response $\propto p_T^2$.

So, non-linear response becomes more significant for larger p_T.

\footnote{(N. Borghini and J. Ollitrault)}
Damping rate \(\propto (\text{harmonic order})^2 \times \eta/s: \)

- Damping of \(w_{4(22)} \) < damping of \(w_4 \), which can be generalized to \(n \geq 4 \).
- \(\delta f \) on freeze out may be questionable for higher order flow response.

For \((n \geq 4) \), non-linear response becomes more important for larger \(\eta/s \).

\(^3\)Damping rate \(\propto (\text{harmonic order})^2 \times \eta/s: \)

\[^3\text{(S. Gubser and A. Yarom)}\]
Non-linear response dependence on centrality: integrated $v_n\{2\}$

\bullet $v_n\{2\}^2 = \text{linear response} + \text{crossing terms} + \text{non-linear response}$

$\langle \varepsilon^2 \rangle$ $\langle \varepsilon^2 \cos(...) \rangle$ $\langle \varepsilon^4 \rangle$

$v_3\{2\} : w_3, w_3(12)$ $v_4\{2\} : w_4, w_4(22)$ $v_5\{2\} : w_5, w_5(23)$

(LHC PbPb, ideal hydro, $T_{fo} = 150\text{MeV}$, PHOBOS MC-GLb.)

- Non-linear response is not important for v_3, but crucial for v_4 and v_5.
- Linear response dominates at central bins.
- Non-linear response dominates at peripheral bins.

Non-linear response becomes more important for larger centrality.
Reaction-plane correlations: linear response \((\Phi_n, \ldots) \Leftrightarrow (\Psi_n, \ldots)\)

\((\Psi_4, \Psi_2)\) correlations:

- Initial correlations from cumulants and moments are different.
- Deviations (cumulants def.) from experiment data imply NL response.
 1. At central bins (linear dominant): smaller deviations.
 2. At peripheral bins (non-linear dominant): larger deviations.
Reactivity-plane correlations: linear response \((\Phi_n, \ldots) \Leftrightarrow (\Psi_n, \ldots)\)

\((\Psi_4, \Psi_2)\) correlations:

- Initial correlations from cumulants and moments are different.
- Deviations (cumulants def.) from experiment data imply NL response.
 1. At central bins (linear dominant): smaller deviations.
 2. At peripheral bins (non-linear dominant): larger deviations.
Reaction-plane correlations: non-linear response \((\Phi_n, \ldots) \Leftrightarrow (\Psi_n, \ldots)\)

- \(\langle \cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5) \rangle\): \(\Psi_2 = \Phi_2\) and to the lowest order \(\Psi_3 = \Phi_3\).

\[
\langle \cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5) \rangle = \langle \frac{\cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5)w_5}{|w_5 e^{-i5\Phi_5} + w_5(23)e^{-i(2\Phi_2 + 3\Phi_3)}|} + w_5(23) \rangle
\]

- Understand RP plane correlation with non-linear response formalism.

\[
\text{RP correlations} = \langle \text{PP correlations} + \text{NL correlations} \rangle
\]

\(\text{Linear response limit}\)

\(\text{NL response limit}\)
Reaction-plane correlations: non-linear response \((\Phi_n, \ldots) \leftrightarrow (\Psi_n, \ldots)\)

\[\langle \cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5) \rangle\]: \(\Psi_2 = \Phi_2\) and to the lowest order \(\Psi_3 = \Phi_3\).

\[
\langle \cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5) \rangle = \left\langle \frac{\cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5)w_5w_3 + w_5(23)w_3 + \cdots}{w_5e^{-i5\Phi_5} + w_5(23)e^{-i(2\Phi_2 + 3\Phi_3)}} \right\rangle
\]

Understand RP plane correlation with non-linear response formalism.

\[
\text{RP correlations} = \langle \underbrace{\text{PP correlations}}_{\text{Linear response limit}} + \underbrace{\text{NL correlations}}_{\text{NL response limit}} \rangle
\]
Reaction-plane correlations: non-linear response (Φ_n, \ldots) ⇐ (Ψ_n, \ldots)

- $\langle\cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5)\rangle$: $\Psi_2 = \Phi_2$ and to the lowest order $\Psi_3 = \Phi_3$.

$$\langle\cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5)\rangle = \left\langle \frac{\cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5)w_5w_3 + w_5(23)w_3 + \ldots}{|w_5e^{-i5\Phi_5} + w_5(23)e^{-i(2\Phi_2 + 3\Phi_3)}||v_3|} \right\rangle$$

- Understand RP plane correlation with non-linear response formalism.

$$\text{RP correlations} = \left\langle \underbrace{\text{PP correlations}}_{\text{Linear response limit}} + \underbrace{\text{NL correlations}}_{\text{NL response limit}} \right\rangle$$

Non-linear limit

2−3−5 correlation
Reaction-plane correlations: non-linear response ($\Phi_n, \ldots \rightleftharpoons \Psi_n, \ldots$)

1. $\langle \cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5) \rangle$: $\Psi_2 = \Phi_2$ and to the lowest order $\Psi_3 = \Phi_3$.

$$\langle \cos(2\Psi_2 + 3\Psi_3 - 5\Psi_5) \rangle = \langle \left\langle \frac{\cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5) w_5 w_3 + w_5(23) w_3 + \ldots}{w_5 e^{-i5\Phi_5} + w_5(23) e^{-i(2\Phi_2 + 3\Phi_3) \|v_3\|}} \right\rangle \rangle$$

2. Understand RP plane correlation with non-linear response formalism.

$$\text{RP correlations} = \langle \left\langle \text{PP correlations} \right\rangle + \left\langle \text{NL correlations} \right\rangle \rangle$$

- Linear response limit
- NL response limit

2–4 correlation

Non-linear limit

Linear limit
Two-plane correlations

\[
\langle \cos(4(\Psi_2 - \Psi_4)) \rangle
\]

\[
\langle \cos(8(\Psi_2 - \Psi_4)) \rangle
\]

\[
\langle \cos(12(\Psi_2 - \Psi_4)) \rangle
\]

Nonlinear Response:

- Glb Ideal
- Glb $\eta/s = 1/4\pi$
- \sim ATLAS

\[
\langle \cos(6(\Psi_2 - \Psi_3)) \rangle
\]

\[
\langle \cos(6(\Psi_2 - \Psi_6)) \rangle
\]

\[
\langle \cos(6(\Psi_3 - \Psi_6)) \rangle
\]

$\rightarrow v_3(3, 12), v_4(4, 22), v_5(5, 23), v_6(33, 24, 222)$

\rightarrow (LHC PbPb, $\eta/s = 1/4\pi$, $T_{fo} = 150$MeV, PHOBOS MC-GLb.)
Three-plane correlations

- $v_3(3, 12), v_4(4, 22), v_5(5, 23), v_6(33, 24, 222)$
- (LHC PbPb, $\eta/s = 1/4\pi, T_{fo} = 150\text{MeV}$, PHOBOS MC-GLb.)
Not fair comparison with E-By-E hydro

Response
Nonlinear Response:
- Gibb Ideal
- Gibb $\eta/s=1/4\pi$
- KLN $\eta/s=0.2$
- ATLAS

E by E
Heinz & Qiu E-by-E hydro:
- Gibb $\eta/s=1/4\pi$
- KLN $\eta/s=0.2$
- ATLAS
Summary and conclusions

We have developed a non-linear response formalism for (single-show) hydro:

\[
\text{Initial correlations} + \text{Flow response} = \text{Reaction plane correlations} \\
\text{cumulants} \quad \text{Linear & Non-linear} \quad \text{Final state}
\]

- Ingredients:

1. We use cumulant formalism to classify initial fluctuations.
2. We take linear and non-linear response in hydro calculations, non-linear response vs. \((p_T, \eta/s, \text{centrality})\).
3. Predictions are consistent to final state observables (E-B-E hydro).
Summary and conclusions

We have developed a non-linear response formalism for (single-show) hydro:

\[\text{Initial correlations} + \text{Flow response} = \text{Reaction plane correlations} \]

- **Ingredients:**
 1. We use cumulant formalism to classify initial fluctuations.
 2. We take linear and non-linear response in hydro calculations, non-linear response vs. \((p_T, \eta/s, \text{centrality})\).
 3. Predictions are consistent to final state observables (E-B-E hydro).

Thank you.
Back-up slides
For $w_{4(22)}$ the angle dependence is trivial.

- $\Phi_2 = \Phi_R$ fixed, while Φ_3 rotates $\rightarrow w_{1(23)}$, ($w_{5(23)}$ similar!).
Non-linear correction in v_1 not significant, compare to v_4 and v_5.

Viscous damping at large p_T region.
\[v_4\{2\}(p_T)/v_2\{2\}(p_T)^2 \]

- Scaling behavior reproduced for ideal hydro. large \(p_T \) limit.
- Linear contribution affects the scaling.
- The real observables are dressed with quantities from events average.
\[v_5\{2\}(p_T)/(v_2\{2\}(p_T)v_3\{2\}(p_T)) \]

- Scaling behavior reproduced for ideal hydro. large \(p_T \) limit.
- Linear contribution affects the scaling.
- The real observables are dressed with quantities from events average.
Shape switch at certain time – $\Delta \Phi_n = |\pi/n|

Each of the deformations evolves independently.

Different angular deformations do NOT interact during expansion.
Damping rate as a function of η/s, linear response

Damping rate: $\Gamma_{n,m}\tau_{\text{final}} \rightarrow -\frac{\Delta w_n}{w_n^i} \propto (n+m)^2 \times \frac{\eta}{s}$

n, m are cumulant indices.

- Viscous damping qualitatively follows the rule.
- For $n=4$ and $n=5$, viscous hydro. may have negative response.
- damping of $w_4^{(22)} \simeq 2 \times$ damping of $w_2 <$ damping of w_4.
- damping of $w_5^{(23)} \simeq$ damping of $w_2 +$ damping of $w_3 <$ damping of w_5.
The magnitude of non-linear flow response (vs. centrality)

LHC PbPb: ideal hydro. and visc. hydro. ($\eta/s = 1/4\pi$), $T_\text{fo} = 150$ MeV.