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1. Motivation 1.1 Early thermalization puzzle

1. Motivation
1.1 Early thermalization puzzle at RHIC

experimental data from RHIC (and the LHC) are commonly interpreted as the
evidence for very fast local equilibration of matter, success of perfect fluid
hydrodynamics (τth ≤ 1 fm/c)

fast equilibration contradicts the results of microscopic models of heavy-ion
collisions, string models, color glass condensate, pQCD kinetic calculations, ...

for τ < 1 fm/c, the system exhibits high pressure anisotropy, typically P⊥ ≫ P‖

only at such early times the transverse distribution of matter in nuclei is known
and may be used to model the initial energy/entropy density for the
hydrodynamic calculations

the use of viscous hydrodynamics too early after the impact may be questioned
– the corrections to the perfect-fluid energy-momentum tensor are very large

AdS/CFT correspondence (Janik et al.) predicts also a large difference between
P⊥ and P‖, which slowly decays with time

this gives hints for the REORGANIZATION of the HYDRODYNAMIC
EXPANSION, with the ANISOTROPY INCLUDED in the LEADING ORDER
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1. Motivation 1.2 Forms of the energy-momentum tensor

1. Motivation
1.2 Forms of the energy-momentum tensor of matter produced in HIC
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(late stages) perfect-fluid behavior:
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in the leading order, the energy momentum-tensor is diagonal
but the pressure may be highly anisotropic
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2. Concept of anisotropic hydrodynamics 2.1 Covariant form of the energy-momentum tensor

2. Concept of anisotropic hydrodynamics
2.1 Covariant form of the energy-momentum tensor

P⊥ 6= P‖

T µν = (ε + P⊥) UµUν − P⊥ gµν − (P⊥ − P‖)V
µV ν

P⊥ = P‖ → isotropic fluid, T µν → T µν
perfect hydro

Uµ = γ(1, vx , vy , vz), γ = (1 − v2)−1/2 hydrodynamic flow

V µ = γz(vz , 0, 0, 1), γz = (1 − v2
z )−1/2 longitudinal axis

U2 = 1, V 2 = −1, U · V = 0

local rest frame: Uµ = (1, 0, 0, 0) and V µ = (0, 0, 0, 1)
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M.Martinez, M.Strickland, NPA848 (2010) 183, NPA856 (2011) 68

R.Ryblewski, WF, PRC83 (2011) 034907, PRC85 (2012) 064901
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2. Concept of anisotropic hydrodynamics 2.2 Energy-momentum conservation and entropy production

2. Concept of anisotropic hydrodynamics
2.2 Energy-momentum conservation and entropy production

energy and momentum are conserved but the entropy may grow

∂µT µν = 0

∂µSµ = Σ

Sµ = σUµ – entropy flow
Σ – entropy source, its specific form defines the model

one has to specify:

generalized EOS ǫ = ǫ(P⊥, P‖)
entropy production term Σ = Σ(P⊥, P‖)

system of 5 equations for 5 unknown functions: ~v , P⊥, P‖

in particular, for massless partons the condition T µ
µ = 0 gives

ε(P⊥, P‖) = 2P⊥ + P‖
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3. Microscopic interpretation 3.1 Parton distribution function

3. Microscopic interpretation
3.1 Parton distribution function

locally anisotropic systems of particles → two different scales λ⊥ and λ‖, may
be interpreted as the transverse and longitudinal temperature

fLRF = f
„

p⊥

λ⊥
,
|p‖|
λ‖

«

Romatschke-Strickland (RS) form, generalization of equilibrium/isotropic
distributions, frequently used in the studies of anisotropic quark-gluon plasma
(here as a modified Boltzmann distribution)
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covariant version
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3. Microscopic interpretation 3.2 Energy-momentum tensor

3. Microscopic interpretation
3.2 Energy-momentum tensor and entropy flux

moments of anisotropic distributions

T µν =

Z

d3p pµpν

(2π)3 Ep
f (p · U, p · V ) = (ε + P⊥) UµUν − P⊥ gµν − (P⊥ − P‖)V

µV ν

Sµ =

Z

d3p
(2π)3

pµ

Ep
f (p · U, p · V )

»

1 − ln
„

f (p · U, p · V )

g0

«–

= σUµ

for further analysis most convenient two independent parameters are x
(anisotropy parameter) and σ (non-equilibrium entropy density)

(P⊥, P‖) or (λ⊥, λ‖) −→ (σ, x)
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3. Microscopic interpretation 3.3 Energy, pressure, entropy

3. Microscopic interpretation
3.3 Energy, pressure, entropy for RS form

generalized equation of state

ε(σ, x) = εid(σ)r(x)

P⊥(σ, x) = Pid(σ)
ˆ

r(x) + 3xr ′(x)
˜

P‖(σ, x) = Pid(σ)
ˆ

r(x) − 6xr ′(x)
˜
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3. Microscopic interpretation 3.4 Connection to kinetic theory

3. Microscopic interpretation
3.4 Connection to kinetic theory

M.Martinez, M.Strickland, NPA848 (2010) 183, NPA856 (2011) 68
M.Martinez, R. Ryblewski, M.Strickland, PRC85 (2012) 064901
zeroth moment of the Boltzmann equation = entropy production = gluon emission

pµ∂µf = C ≈ −p · U Γ (f − feq), ∂µ

Z

dP pµf =

Z

dP C

Γ is the inverse relaxation time, for the covariant RS form, σ = 4n, one gets

∂µ (σUµ) =
1
4

Z

dP C = Σ ≈ Γ

4
(neq − n) (one equation)

first moment of the Boltzmann equation, energy-momentum conservation

∂µ

Z

dP pνpµf =

Z

dP pνC = ∂µT νµ = 0 (four equations)

Z

dP pνC = −
Z

dP p · U pν Γ (f − feq) = 0 (Landau matching for T (P⊥, P‖) in feq)

5 equations for 5 unknown functions: ~v , P⊥, P‖ similarly as in the phenomenological

approach introduced earlier
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3. Microscopic interpretation 3.5 Ansatz for Σ

3. Microscopic interpretation
3.5 Phenomenological ansatz for Σ

the simplest ansatz for Σ has the form

Σ =
(λ⊥ − λ‖)

2

λ⊥ λ‖

σ

τeq

=
(1 −

√
x)2

√
x

σ

τeq

where τeq is a timescale parameter

consistent with Israel-Stewart (IS) theory for small ξ = x − 1 and for purely
longitudinal boost-invariant motion (more details given later)

Σ ≈ ξ2

4τeq

σ

for large ξ = x − 1 various forms of Σ are conceivable, results of microscopic
models may be used to introduce time dependence of x , in particular one may
use the AdS/CFT correspondence
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4. Purely-longitudinal boost-invariant motion 4.1 Implementation of boost-invariance

4. Purely-longitudinal boost-invariant motion
4.1 Implementation of boost-invariance

boost-invariant ansatz for U and V

Uµ = (cosh η, 0, 0, sinh η), V µ = (sinh η, 0, 0, cosh η)

τ =
p

t2 − z2, η =
1
2

ln
t + z
t − z

leads to the two equations of motion

dε

dτ
= −ε + P‖

τ
,
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σdτ
+

1
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=
Σ

σ

the first equation is equivalent to:
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«

Σ = 0 −→ x = 1 or dx/dτ = 2x/τ (local equilibrium or free streaming)
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4. Purely-longitudinal boost-invariant motion 4.2 Connection with the Israel-Stewart theory

4. Purely-longitudinal boost-invariant motion
4.2 Connection with the Israel-Stewart theory

close to equilibrium, |ξ| ≪ 1, P‖(x) = Peq − π̄, P⊥(x) = Peq − π̄
2

π̄

εeq

=
8

45
(x − 1) =

8
45

ξ

our equations agree with the evolution equation for π̄ in 0+1 I-S theory:

dπ

dτ
+
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3τ
− 16

45
ε

τ
= − 15π
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→ dπ

dτ
= −4π

3τ
+

4ηπ
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with the identification
1
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=
4

15τπ
, τπ =

5ηπ

Tσeq

similar agreement for the entropy production with IS:

∂µSµ = σeq
ξ2

4τeq

−→ ∂µSµ =
3π̄2

4ηπT

the results shown in this presentation are for FIXED τeq,
in this way we REPRODUCE the perfect-fluid behavior for τ ≥ 2τeq
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5. Non-boost-invariant (3+1)D case 5.1 Initial conditions

5. Non-boost-invariant (3+1)D case
5.1 Initial conditions

Initial evolution time τ0 = 0.25 fm, equilibration time τeq = 0.25 fm and 1 fm

initial anisotropy choices: x0 = 100 (transverse thermalization), x0 = 1 (perfect
fluid), and x0 = 0.032 (longitudinal thermalization)

initial energy density profile (tilted source by P.Bozek)

ε0(τ0, η, x⊥) = εi ρ̃(b, η, x⊥) ρ̃(b, η, x⊥) =
ρ(b, η, x⊥)

ρ(0, 0)

ρ(b, η, x⊥) = (1 − κ)
ˆ

ρ+
W (b, x⊥) f + (η) + ρ−

W (b, x⊥) f− (η)
˜

+ κρB (b, x⊥) f (η)

initial longitudinal profile

f (η) = exp
»

− (η − ∆η)2

2σ2
η

θ(|η| − ∆η)

–

∆η = 1, σ2
η = 1.3

mixing factor κ = 0.14, initial energy density in the center εi chosen separately
for each pair of x and τeq
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5. Non-boost-invariant (3+1)D case 5.2 Generalized EOS

5. Non-boost-invariant (3+1)D case
5.2 Generalized EOS – inclusion of the phase transition

to connect the isotropization with the process of formation of the equilibrated
quark-gluon plasma we may consider the following ansatz

ε(σ, x) = εqgp(σ)r(x)

P⊥(σ, x) = Pqgp(σ)
ˆ

r(x) + 3xr ′(x)
˜

P‖(σ, x) = Pqgp(σ)
ˆ

r(x) − 6xr ′(x)
˜

Here, the functions εqgp(σ) and Pqgp(σ) describe the realistic equation of state :

M. Chojnacki and WF, Acta Phys. Pol. B38 (2007) 3249.
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5. Non-boost-invariant (3+1)D case 5.3 dN/dη of charged particles

5. Non-boost-invariant 3+1D case
5.3 dN/dη of charged particles

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green),
freeze-out at constant entropy density corresponding to T = 150 MeV,
first 1 fm/c of the freeze-out hypersurface excluded
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5. Non-boost-invariant (3+1)D case 5.4 p⊥ spectra in different y windows

5. Non-boost-invariant (3+1)D case
5.4 p⊥ spectra in different y windows

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green)

0.0 0.5 1.0 1.5 2.010-15

10-11

10-7

0.001

10

pT @GeVD

d
2
N
�H

2Π
p T

dp
T

dy
L@

G
eV
-

2
D

Π
+

BRAHMS Au+Au� SNN = 200 GeV

0<y<0.1

3.4<y<3.66

c = 0-5%Τeq = 1. fm

0.0 0.5 1.0 1.5 2.010-13

10-10

10-7

10-4

0.1

100

pT @GeVD

d
2
N
�H

2Π
p T

dp
T

dy
L@

G
eV
-

2
D

K +

BRAHMS Au+Au� SNN = 200 GeV

0<y<0.1

3.2<y<3.4

c = 0-5%Τeq = 1. fm

WF (UJK, IFJ PAN) August 15, 2012 16 / 20



5. Non-boost-invariant (3+1)D case 5.5 v1 of charged particles

5. Non-boost-invariant (3+1)D case
5.5 pseudorapidity dependence of v1 for charged particles

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green)
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5. Non-boost-invariant (3+1)D case 5.6 v2(pT ) in midrapidity

5. Non-boost-invariant (3+1)D case
5.6 v2(pT ) in midrapidity

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green)
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5. Non-boost-invariant (3+1)D case 5.7 v2 of charged particles

5. Non-boost-invariant (3+1)D case
5.7 pseudorapidity dependence of v2 for charged particles

Initial anisotropy : x0 = 1 (black), x0 = 100 (blue), and x0 = 0.032 (green)
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6. Conclusions

6. Conclusions

A new framework of ANISOTROPIC HYDRODYNAMICS has been introduced.
The effects of dissipation are defined by the form of the entropy source. The
entropy production is directly connected with the soft particle (gluon) production.
This process is responsible for isotropization/thermalization.

The RHIC soft hadronic data described with (3+1)D code. Initial conditions with
extremely different anisotropies lead to similar results, provided the initial energy
density and rapidity profiles are properly readjusted.

Complete THERMALIZATION of the system MAY BE DELAYED to easily
acceptable times of about 1–2 fm/c. The early-thermalization puzzle may be
circumvented.
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