Inclusive jet spectra in 2.76 TeV collisions from ALICE

Rosi Reed,
on behalf of the ALICE Collaboration
Yale University
Jets in Heavy-Ion Collisions

- Jets make an ideal probe of the medium
 - Partons from hard scattering are produced early
 - Propagating parton is modified by the QCD medium
 - Observation of jet quenching indicates modification

- Experimental challenges
 - Need to remove underlying event contribution
 - Jet \(p_T = p_T^{\text{rec}} - \rho A \)
 - \(A \) = Jet area
 - \(\rho \) = Underlying event momentum density
 - \(p_T^{\text{rec}} \) = Jet \(p_T \) from jet finder
ALICE Jets at $\sqrt{s} = 2.76$ TeV

- Inclusive jet cross section in pp $\sqrt{s} = 2.76$ TeV
- Important reference for Pb-Pb measurements
- Test of pQCD calculations
- Minimum-bias: 0.4 nb$^{-1}$
- EMCal trigger: 4x4 towers, 3 GeV threshold: 11 nb$^{-1}$

- Pb-Pb charged jets
 - 15M events from 2010 Pb-Pb run
 - Uniform $\eta - \Phi$ acceptance: $|\eta| < 0.9$ $0 < \Phi < 2\pi$
 - Neutral energy missing
Jets at ALICE

Tracking: $|\eta| < 0.9$, $0 < \Phi < 2\pi$

TPC: gas detector
ITS: silicon detector

Charged constituents

Rosi Reed - QM 2012
Jets at ALICE

Tracking: $|\eta| < 0.9$, $0 < \phi < 2\pi$
TPC: gas detector
ITS: silicon detector

Charged hadronic correction prevents double counting

EMCal is a Pb-scintillator sampling calorimeter which covers:
- $|\eta| < 0.7$, $1.4 < \phi < \pi$
- tower $\Delta \eta \sim 0.014, \Delta \phi \sim 0.014$

Rosi Reed - QM 2012
Jet Reconstruction

- Input to the Jet Finder
 - Assumed to be massless
 - Charged tracks with $p_T > 150$ MeV/c (pp, Pb-Pb)
 - EMCal clusters with $E_T > 150$ MeV after hadronic correction: (pp)
 - $E_{\text{cluster}}^{\text{cor}} = E_{\text{cluster}}^{\text{orig}} - f \sum p^{\text{matched}}, \ E_{\text{cluster}}^{\text{cor}} \geq 0$
 - For pp analysis $f = 100\%$

- Jets reconstructed using FastJet package
 - $R = 0.2, 0.3, 0.4$
 - Anti-k_T for signal jets (pp, Pb-Pb)
 - k_T for ρ calculation (Pb-Pb)
 - EMCal jets: Fiducial cut requires jet fully contained in the EMCal acceptance (pp)
Detector Effects - pp

- **Bin-by-bin technique**
 - Compare simulated the cross sections before and after Detector response
 - Use uncorrected spectrum in data as weighting function

- **Shift of jet energy scale ~ 20-25%**
 - Unmeasured neutrons and K⁰’s: compare proton and kaon spectra to data; PYTHIA vs HÉRWIG
 - Tracking inefficiency: track quality in data vs simulation
 - Residual hadronic correction for EMCal: data-driven check
 - **JES uncertainty ~ 4%**

- **Jet energy resolution ~ 18%**
 - Detector resolution: data-driven check + test beam
 - Fluctuations (e-by-e) in correction of jet energy scale
Good agreement between data and NLO calculations as well as PYTHIA8 prediction within both experimental and theoretical uncertainties. See Rongrong Ma’s Poster #35
Inclusive pp Cross Section

R=0.2

anti-\kT, R=0.2

\textbullet{} ALICE pp \sqrt{s} = 2.76\,\text{TeV}: L_{\text{int}} = 11 \, \text{nb}^{-1}

- Correlated systematic uncertainty
- Uncorrelated systematic uncertainty

NLO (N. Armesto)
NLO (G. Soyez)
NLO + Hadronization (G. Soyez)

PYTHIA8: points displaced horizontally for visibility

R=0.4

anti-\kT, R=0.4

\textbullet{} ALICE pp \sqrt{s} = 2.76\,\text{TeV}: L_{\text{int}} = 11 \, \text{nb}^{-1}

- Correlated systematic uncertainty
- Uncorrelated systematic uncertainty

NLO (N. Armesto)
NLO (G. Soyez)
NLO + Hadronization (G. Soyez)

PYTHIA8: points displaced horizontally for visibility

\(\frac{d^2\sigma}{dp_T dp_T'} \) (mb c/GeV)

\(p_T \) (GeV/c)

\((\text{Model data})/\text{Data} \)

\(p_T \) (GeV/c)
NLO ratio is equivalent to ratio of cross sections calculated at NNLO

Good agreement between data and NLO+hadronization[1] within experimental and theoretical uncertainties

[1] G. Soyez, Phys.Lett. B698 (2011) 59
Neutral Energy Fraction

- Compare the neutral energy fraction (NEF) distribution between data and Detector Level simulation in different jet p_T bins
- *Good agreement within the statistical precision*
Charged Jets in Pb-Pb

- 2 important aspects of the underlying event (UE)
 - Within-event fluctuations
 - Average background

JHEP, vol 1203, p 053 2012

$$\rho_{ch} = \text{median}(\frac{P_T^{kT\ jet}}{A^{kT\ jet}})$$

- Effect of UE on jets
 - Multiplicity/flow
 - Dependent on R
 - Constituent cut
Detector and Background Effects

- Unfold measured spectrum to obtain true spectrum
 - Effects are combined in response matrix
 - Background ➔ data driven
 - Detector Effects ➔ simulation
 - χ^2 minimization routine

- Leading track bias removes combinatorial jets
 - Important for charged + neutral Pb-Pb analysis since background fluctuations are larger than in charged only
 - Can cause a fragmentation bias which we can observe in charged only analysis
Charged Jet Spectra in Pb-Pb 0-10%

- Leading track requirement facilitates unfolding to a lower jet p_T compared to inclusive results.
- Does not have a large effect on the spectra with $p_T > 30$ GeV/c.

Marta Verweij’s Poster #34
Jet Structure

- $R=0.2/R=0.3$ is consistent with vacuum jets
- In both central and peripheral collisions!

- Charged Pb-Pb results show consistency with PYTHIA
- pp shows PYTHIA simulates vacuum fragmentation well

Rosi Reed - QM 2012
Jet Quenching
Charged Jets in Pb-Pb

JEWEL : (Zapp, Krauss, Wiedemann arXiv:1111.6838)

Charged jets show suppression with PYTHIA reference (R_{AA}) and from peripheral to central (R_{CP}).
Charged+Neutral
Background Determination

\[\rho_{ch+em} = \text{median}(\frac{p_{T,jet}^{k_T}}{A^{k_T,jet}}) \]

- \(\rho_{ch+em} > \rho_{ch} \)
- \(\sigma_{ch+em} \delta p_T > \sigma_{ch} \delta p_T \)
 - 6.1 vs 4.5 GeV/c

Fluctuation size characterized by \(\delta p_T \)

- Embedded particle
 \[\delta p_T = p_{T,\text{rec}} - \rho_{ch+em} A^{\text{Anti-}k_T} - p_{T,\text{emb}} \]
- Random Cones
 \[\delta p_T = p_{T,\text{rec}} - \rho_{ch+em} \pi R^2 \]
Conclusions and Outlook

- Report on fully reconstructed jet cross section for pp $\sqrt{s} = 2.76$ TeV $R = 0.2, 0.4$
 - The measured cross sections agree well with theory
 - The ratio agrees well with NLO+hadronization
 - Important reference

- Charged jet analysis in Pb-Pb collisions
 - Strong jet suppression in central events
 - No signs of modified jet structure observed in ratio $R=0.2/R=0.3$

- Charged+neutral background fully characterized in Pb-Pb
Back-up
Unfolding the background

- Need to **unfold** measured jet spectrum to obtain 'real' jet spectrum (Truth)

- Low p_t jets are dominated by random collections of particles → background jets. These appear up to very high p_t.

Toy model G. Barros et al.
Talk Parallel IIB Monday

![Graph showing jet spectrum unfolding](image)
Unfolding the background

- Need to **unfold** measured jet spectrum to obtain 'real' jet spectrum (**Truth**)
- **Refolded** = unfolded jet spectrum smeared with background fluctuations

Assume:

\[
\frac{dN}{dp_T}_{\text{meas}} = P(\delta p_T) \otimes \frac{dN}{dp_T}_{\text{jet}}
\]

Unfolding done with \(\chi^2\) minimization

\[
\chi^2 = \sum_{\text{refolded}} \left(\frac{y_{\text{refolded}} - y_{\text{measured}}}{\sigma_{\text{measured}}} \right)^2 + \beta \sum_{\text{unfolded}} \left(\frac{d^2 \log y_{\text{unfolded}}}{d \log p_T^2} \right)^2
\]

\(\chi^2\)-term

Regularization/penalty
Unfolding: p_t ranges & systematics

- Measured spectrum: $p_{t,\text{min}} - p_{t,\text{max}}$
 - $p_{t,\text{min}} \sim 5\sigma(\delta p_t) \rightarrow$ Suppression of background jets. Estimated from various toy model studies
- Feed in from low p_t
 - Unfolded starts at $p_t=0$ GeV/c
- Feed in from high p_t

Systematic uncertainty from unfolding procedure
'Shape uncertainty'

Main contributions
- Regularization strength
- p_t cut-off in measured spectrum
- Feed in of low p_t bins in unfolded spectrum
Including detector effects

Response matrix includes background fluctuations and detector effects (tracking efficiency and track p_t resolution).
No correction for missing neutral particles

Truth \rightarrow D \rightarrow Measured

RM_{det}

$RM_{\delta pt}$

D=jet spectrum after detector effects

$$M = RM_{\delta p_t} \cdot RM_{det} \cdot T$$

$p_{t,\text{jet}}<60$ GeV/c:
Dominant correction from background fluctuations