Measurement of jet spectra with charged particles in Pb-Pb collisions at $\sqrt{s_{_{NN}}}=2.76$ TeV with the ALICE detector

Marta Verweij
for the ALICE collaboration

Quark Matter 2012, Washington
Jets in Heavy-Ion Collisions

- Probes to study properties of medium
- Due to interaction of the jet with the medium, the jet is modified: Jet Quenching

Experimental challenge in HI collisions:
Separate jet signal from large soft background originating from bulk

- In this analysis $R=0.2$ and $R=0.3$ anti-k_T jets with $p_{T,\text{track}}>150$ MeV/c
Jets in HI events: background

Event-by-event subtraction of average background momentum density ρ.

Background fluctuations quantified by embedding high p_T probes in Pb-Pb events

Width of fluctuations for jets with constituent $p_T>150$ MeV/c:

$\sigma(\delta p_T, R=0.2) = 4.5$ GeV

$\sigma(\delta p_T, R=0.3) = 7.1$ GeV

JHEP, vol 1203, p 053 2012
Jets in HI events: background

Combinatorial jets: clusters which do not originate from a hard process. Reduced by triggering jets with a leading track of $p_T > 5$ and 10 GeV/c.

Combinatorial / fake jets

Jets reconstructed from charged particles with $p_T > 150$ MeV/c.
Unfolding

Raw jet spectra need to be corrected for background fluctuations.

Background fluctuations shift low p_T jets to high p_T.
Background and detector corrections

Raw jet spectra need to be corrected for background fluctuations and detector effects.

Background fluctuations shift low p_T jets to high p_T.

Detector effects shift jets to lower p_T.
Jet Suppression

Corrected jet spectra:
Leading track requirement \rightarrow fragmentation bias at low p_T
Jet Suppression

Corrected jet spectra:
Leading track requirement → fragmentation bias at low p_T

Strong jet suppression observed.
Fragmentation bias the same for central and peripheral events.
\(\sigma(R=0.2)/\sigma(R=0.3) \) consistent with vacuum jets for peripheral and central collisions → no sign of jet broadening

Good agreement with energy loss MC JEWEL.

\[JEWEL: \text{Zapp, Krauss Wiedemann arXiv:1111.6838} \]
Summary

- ALICE measures charged particle jets with constituents $p_T > 150$ MeV/c
 - Average HI background is subtracted event-by-event
 - Background fluctuations and detector effects are corrected by unfolded
- Strong jet suppression in central events
 - Fragmentation bias due to leading track requirement the same for central and peripheral events
- No signs of modified jet structure observed in ratio of jet cross sections $\sigma(R=0.2)/\sigma(R=0.3)$
backup
Model Comparison
Jet R_{AA}: ALICE vs JEWEL

JEWEL reproduces
→ Hadron R_{AA} (Zapp, Krauss Wiedemann arXiv:1111.6838)
→ Charged jet R_{AA} for R=0.2 and R=0.3
Jet R_{CP}

Strong suppression for jets
No strong p_t dependence

Central events jet $R_{CP} \sim 0.5$
Peripheral closer to 1
Unfolding the background

- Need to **unfold** measured jet spectrum to obtain 'real' jet spectrum (**Truth**)
- Low p_t jets are dominated by random collections of particles → background jets. These appear up to very high p_t.

![Graph showing the distribution of jet spectra with $p_{t,emb} = 15$ GeV/c and comparing measured, toy, and ALICE data with different cross sections.](image)
Jet Reconstruction

- ALICE uses sequential recombination algorithms from FastJet package:
 - anti-k_t for signal (stable area)
 - k_t to estimate background density
 - Boost invariant p_t recombination scheme (sets jet mass to zero)
 - Charged tracks with $p_t > 150$ MeV/c

- Jet reconstruction with charged tracks reconstructed in tracking detectors (ITS + TPC):
 - High precision on particle level
 - Uniform η-ϕ acceptance: $|\eta|<0.9$ $0<\phi<2\pi$
 - Neutral energy missing, eg. π^0, n, γ
 measurement not corrected for neutral energy
 - No correction for hadronization effects

15M events from 2010 Pb-Pb run
Jet spectra have been measured for 2 cone radii and 4 centrality bins.
Jet Constituents

Spectra corrected for detector level effects for particles with $p_t > p_{t,\text{min,track}}$.

R=0.2: PbPb very similar to Pythia → shift of spectrum in p_t for PbPb and Pythia. Not many soft particles in small cone of R=0.2.
Uncorrected Jet Spectra

$R=0.4$

Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV

Charged Jets
Anti-k_T, $R = 0.4$
$p_T^{\text{track}} > 0.15$ GeV/c
Area > 0.4

$\sigma(\delta p_T) \sim 11$ GeV

$\sigma(\delta p_T)$ values for central events

$R=0.3$

Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV

Charged Jets
Anti-k_T, $R = 0.3$
$p_T^{\text{track}} > 0.15$ GeV/c
Area > 0.25

$\sigma(\delta p_T) \sim 7$ GeV

$\sigma(\delta p_T)$ values for central events

$R=0.2$

Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV

Charged Jets
Anti-k_T, $R = 0.2$
$p_T^{\text{track}} > 0.15$ GeV/c
Area > 0.07

$\sigma(\delta p_T) \sim 4.5$ GeV

Less Background Fluctuations

Smaller Jets \rightarrow Less Background Fluctuations
Area dependence

- Multiplicity bin typical for 10% most central events
- Reduced background fluctuations for smaller jet areas
- Measured $\sigma(\delta p_T)$ larger than naive expectation from only statistical fluctuations
 \rightarrow flow and hard jets
Background Fluctuations

- Background fluctuations estimated by studying the response of embedded high p_T probe in heavy ion event.

- Data driven approach to estimate influence of background fluctuations on jet reconstruction.

- We embed different kind of probes:
 - Random cones
 - Single tracks
 - Jets from full detector simulation pp @ 2.76 TeV

- Response is quantified by comparing the reconstructed jet to the embedded probe:

\[
\delta p_T = p_{T, jet}^{rec} - \rho A - p_{T, probe}
\]
Event Background

- Event-by-event background subtraction

\[\rho = \text{median} \left(\frac{p_T^{\text{jet},i}}{A_i^{\text{jet}}} \right) \]

- Background density scales with event multiplicity:
 \[\rho \sim N \langle p_T \rangle \]

- 0-10% centrality:
 \[\langle \rho \rangle \sim 140 \text{ GeV/area} \]
 \[\rightarrow 70 \text{ GeV/c for } R=0.4 \text{ cone} \]

- Event-by-event fluctuations of \(\rho \) for fixed multiplicity.