Quark Matter 2012

Contribution ID: 107 Type: Poster

Hydrodynamics at large baryon densities: Understanding proton vs. anti-proton v_2 from baryon number conservation

Thursday 16 August 2012 16:00 (2 hours)

Using hydrodynamics we explore the effects of the initial state, baryon stopping and baryon number transport on various observables such as spectra, elliptic flow and particle yields for heavy ion collisions at beam energies from sqrt{s_{NN}}=7.7 to 200 GeV. We find that observed phenomena such as the centrality dependent freeze out parameters as well as the apparent difference in particle and anti-particle v_2 can be explained by a collective hydrodynamic expansion, once baryon stopping and baryon number conservation are properly taken into account. We will further discuss how the various stages of the collision contribute to the p_{t} spectra, the mass dependence of T_{eff} and particle ratio fluctuations.

Author: Dr STEINHEIMER-FROSCHAUER, Jan (Lawrence Berkeley National Laboratory)

Co-authors: BLEICHER, Marcus (Uni Frankfurt); KOCH, Volker (LBNL)

Presenter: Dr STEINHEIMER-FROSCHAUER, Jan (Lawrence Berkeley National Laboratory)

Session Classification: Poster Session Reception

Track Classification: Global and collective dynamics