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Motivation

Relativistic heavy ion collisions provide an important means to explore the phase diagram
of QCD at finite temperature and chemical potential. Despite its conceptual simplicity, the
statistical model is in good agreement with experiments as concerning particle yields
as well as temperature and baryon chemical potential at chemical freeze-out.
It was conjectured [1] that only multi-particle processes/collective effects can maintain
chemical equilibrium (at least for low baryon densities)

⇒ Tchemical freeze-out ' Tchiral crossover .

Question: What happens at large densities?
Since µ ' 900 MeV is the territory of nuclear physics, an effective nucleon-meson
model is useful.

Lagrangian:

L = ψ̄
(
i/∂ + gv/ω + µγ0 + gs(σ + iγ5π · τ )

)
ψ+

+ 1
2(∂σ)2 + 1

2(∂π)2 + ∂[µων]∂
[µων] + 1

2m
2
ωωµω

µ + Umic(σ,π).

contains protons and neutrons, as well as vector-mesons, a scalar meson and pion degrees
of freedom.

Extension I: Treatment of Neutron Stars. Recently, a two-solar mass neutron star was
observed [2], so one might ask if the model is compatible with the latest data.
Extension II: Treatment of mesonic fluctuations with help of the functional renor-
malization group (FRG).

Mean Field Approximation [3]

At the mean field level, σ and ω0 acquire finite expectation values. The nucleons are
integrated out → free-gas pressure. The effective potential is

U = Uvac(σ,π, ω0)− 4Pfree gas(T, µ, σ, ω0),

Pfree gas =

∫
d3p

(2π)3 log
[
1 + e−β(

√
p2+m2−µeff)

]
+ (µeff → −µeff),

m = gsσ, µeff = µ + gvω0.

The vacuum potential is expanded around its form near the liquid-gas phase transition
(T = 0, µ = µc = 922.7 MeV);

Uvac = −m2
πfπ(σ − fπ) +

Nmax∑
n=1

an(ρ− ρ0)
n − m2

ω

2 ω
2
0, ρ = 1

2σ
2 + 1

2π
2.

Procedure:

1 Minimize the potential

∂σU = 0 ⇒ σ̄,

∂ω0
U = 0 ⇒ ω0 = − gv

m2
ω
· nB.

2 Compute the grand-canonical potential and the thermodynamical observables

Ω = U(σ̄, ω̄0), nB = ∂µΩ, s = −∂TΩ,

p = −Ω, ε = Ω + Ts + µnB.

Result: There is no indication of a chiral phase transition at chemical freeze-out
[3, 4]:
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(a) Crosses: chemical freeze-out from experiment [4].

Black Line: constant nB = .15nnucl. Red Line: liquid-

gas transition. Blue/green dashed lines: applicability of

the model.
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(b) Chiral order parameter as a function of temperature

(both in MeV) at chemical potential µ = 750 MeV.

There is no discontinuity in the chiral order parameter. This would be the case if there
were indeed a phase transition.

Neutron Stars I

A study of neutron-star matter requires additional ingredients:

1 There is an excess of neutrons over protons. Therefore different chemical potentials
µp, µn for protons and neutrons are needed.

2 Electrons with chemical potential µe.

Procedure in mean field approximation: Solve simultaneously:

∂σU = 0,

∂ω0
U = 0 ⇔ ω0 = − gv

m2
ω
· nB,

µn = µp + µe, beta equilibrium,

np = ne, charge neutrality.

Here µe =
√
p2
F + m2

e and p3
F = 3π2ne.

Neutron Stars II

Comparison: Blue: Beta Equilibrium, Red: Pure Neutron Matter, Green: Akmal et al.
[5]
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(a) Equation of state.
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(b) Baryon density as a function of the

neutron chemical potential.
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(c) Chiral order parameter.

There still appears a first order liquid-gas transition, which is unphysical for neutron stars.
The repulsion is not sufficient, which is due to the fact that a vector-isovector degree
of freedom ρ is still missing.

Neutron Stars III: Extension by the ρ-field

Taking the ρ into account, the improved Lagrangian is

L = ψ̄
(
i/∂ + gv(/ω + /ρ · τ ) + gs(σ + iγ5π · τ ) + ( µp µn ) γ0

)
ψ+

+ ψ̄e(i/∂ + µeγ
0)ψe + 1

2(∂σ)2 + 1
2(∂π)2 + U(ρ, σ)+

+ ∂[µων]∂
[µων] + ∂[µρν]∂

[µρν] + 1
2m

2
ωωµω

µ + 1
2m

2
ρρµρ

µ.

Now σ, ω0 and ρ3
0 acquire finite expecation values. The effective chemical potentials

are

µeff,p = µ + gω(ω0 + ρ3
0),

µeff,n = µ + gω(ω0 − ρ3
0).

Comparison: Red: Pure Neutron Matter, Green: Akmal et al. [5]
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(a) Equation of state.
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(b) Baryon density.
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(c) Chiral order parameter.

The equation of state is still not sufficiently stiff to support a two-solar-mass neutron
star.

Renormalization Group

So far, the model was studied in the mean field approximation, without any mesonic fluc-
tuations. They can be included with help of the Functional Renormalization Group.
The effective action Γk is studied that includes all fluctuations above the renormalization
scale k. Its flow is governed by Wetterich’s Equation [6] that interpolates between an
UV-action at k = ΛUV and a full effective action at k = 0:

k∂kΓk[Φk] =
1

2
Trk∂kRk

(
Γ

(2)
k [Φk] + Rk

)−1

=
1

2
.

Γ
(2)
k is its the second derivative of the effective action with respect to the fields. Rk is the

regulator function, which cuts off low momenta. For the model at hand, Wetterich’s
equation is

∂tΓk = βV
k5

12π2

[
3
1 + 2 1

eβEπ−1

Eπ
+

1 + 2 1
eβEσ−1

Eσ
− 8

Eq

(
1− 1

eβ(Eq−µeff) + 1
− 1

eβ(Eq+µeff) + 1

)]
,

E2
π = k2 + U ′, E2

σ = k2 + U ′ + 2ρU ′′, E2
q = k2 + 2g2

sρ.

Conclusions

1 The study of a nucleon-meson model expanded around the liquid-gas first-order
phase transition is generalized to neutron star matter.

2 A vector-isovector degree of freedom has to be taken into account in order to get
rid of the phase transition for neutron star matter.

3 The equation of state appears to be to soft to support a two solar-mass neutron star.

4 Studies of fluctuation effects are in progress.
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