

Collision Energy Dependence of Hydrodynamic Flow in Relativistic Heavy-Ion Collisions

Chun Shen and Ulrich Heinz

The Ohio State University

Quark Matter, Aug 14, 2012

Ref: C. Shen and U. Heinz, PRC **85** (2012) 054902

Little Bang

Motivation

2(13)

In Collaboration with visualization framework by MADAI collaboration, funded by the NSF under grant# NSF-PHY-09-41373

Global Observables

Collision energy (A GeV)	T_0 (MeV)	life time (fm/c)	produced particles
			per rapidity unit
AuAu@ 7.7	269.2	9.3	212.3
AuAu@ 11.5	287.5	10.0	266.7
AuAu@ 17.7	304.8	10.5	325.3
AuAu@ 19.6	308.7	10.6	339.2
AuAu@ 27	320.1	10.9	382.9
AuAu@ 39	332.2	11.2	432.7
AuAu@ 63	341.1	11.4	472.0
AuAu@ 200	378.6	12.2	661.9
PbPb@ 2760	485.2	14.2	1575.7
<u> </u>	80%	50	%/ 600%/
$V \sim 10^{10} K 1 \text{fm} / \alpha \sim 3 \text{V}$	(10^{-24})		4(

 $1 \text{MeV} \sim 10^{10} K \ 1 \text{fm/c} \sim 3 \times 10^{-24} s$

Centrality dependence of final charged multiplicity

Centrality dependence of final charged multiplicity Shape comparison

Centrality dependence of final charged multiplicity Shape comparison

MC-Glb. shows good scaling behavior (fixed hard/soft ratio α)

MC-KLN: the slope of the curves get flatter as we go to the lower collision energy (not a viscous effect!) 5(13)

Along with \sqrt{s}

average radial flow $\langle v_{\perp} \rangle$ increases by 80%

Along with \sqrt{s}

RHIC@200 A GeV

LHC@2760 A GeV

Good \sqrt{s} scaling behavior for MC-Glauber model

Scaling breaks in MC-KLN model due to different centrality dependence of overlapping area

Scaling breaks in MC-KLN model due to different centrality dependence of overlapping area

Scaling breaks in MC-KLN model due to different centrality dependence of overlapping area

3

G. Kestin and U. Heinz, Eur. Phys. J. C 61, 545(2009)

$$\eta/s = 0$$

• Ideal hydro: $v_2(p_T)$ peaks at around $\sqrt{s} \sim 5$ GeV

- $\eta/s = 0$ $\eta/s = 0.08$ $\eta/s = 0.20$
- Ideal hydro: $v_2(p_T)$ peaks at around $\sqrt{s} \sim 5$ GeV

- $\eta/s = 0$ $\eta/s = 0.08$ $\eta/s = 0.20$
- Ideal hydro: $v_2(p_T)$ peaks at around $\sqrt{s} \sim 5$ GeV
- MC-Glb. : $v_2(p_T)$ reaches broad maximum for $\sqrt{s} \sim 200~{\rm GeV}$ $\eta/s = 0.08$
- MC-KLN : $v_2(p_T)$ will peak somewhere at $\sqrt{s} > 2760 \,\text{GeV}$ $\eta/s = 0.20$

- $\eta/s = 0$ $\eta/s = 0.08$ $\eta/s = 0.20$
- Ideal hydro: $v_2(p_T)$ peaks at around $\sqrt{s} \sim 5$ GeV

 η/s

- MC-Glb. : $v_2(p_T)$ reaches broad maximum for $\sqrt{s} \sim 200~{\rm GeV}$ $\eta/s = 0.08$
- MC-KLN : $v_2(p_T)$ will peak somewhere at $\sqrt{s} > 2760 \,{\rm GeV}$ $\eta/s = 0.20$

> peak in $v_2(p_T, \sqrt{s})$ moves to larger \sqrt{s}

12(13)

12

$$\epsilon_x(\Sigma) = rac{\int_\Sigma u^\mu d^3 \sigma_\mu \left(y^2 - x^2
ight)}{\int_\Sigma u^\mu d^3 \sigma_\mu \left(y^2 + x^2
ight)},$$

20-30% LHC

12(13)

12(13)

Summary

Collision energy dependence of soft hadron observables will help us constrain initial conditions as well as evolution dynamics

• MC-Glb. with $\eta/s = 0.08$ shows good \sqrt{s} -scaling behavior $\frac{dN/d\eta}{N_{\text{part}}/2}$ vs N_{part} v_2/ϵ_2 vs $\frac{1}{S}\frac{dN}{d\eta}$

MC-KLN model with $\eta/s = 0.20$ does **not**

- Increasing shear viscosity changes the balance between radial and elliptic flow, shifting the peak of $v_2(\sqrt{s}, p_T)$ to larger \sqrt{s}
- Novel final shape analysis predicts the spatial eccentricity at freeze-out approaches zero at LHC energy

Back up

Centrality Dependence of the Initial Entropy Densities

