# **Heavy Flavor Results from ALICE**

#### Zaida Conesa del Valle (CERN & IPHC/CNRS-IN2P3) for the ALICE Collaboration





#### OUTLINE



- \* Introduction
- \* Overview of heavy flavor measurements in ALICE
- \* Results in proton-proton and lead-lead collisions
  - Cross sections in pp collisions
  - Nuclear modification factor: electrons, muons,  $D^0$ ,  $D^+$ ,  $D^{*+}$ ,  $D_s^+$
  - Azimuthal anisotropy:
    - v<sub>2</sub> in semi-central collisions: electrons, D<sup>0</sup>, D<sup>+</sup>, D<sup>\*+</sup>
    - $D^0 v_2 v_3$ . centrality and  $R_{AA} v_3$ . Event Plane
- \* Summary







[Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]



Why charm and beauty ?

- \* Production in hard partonic collisions
  - Production time  $\tau_p \sim 1/m_Q \sim 0.05 0.15 \text{ fm/c}$

```
\Rightarrow Tool to test pQCD calculations
```



[Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]



Why charm and beauty?

- \* Production in hard partonic collisions
  - Production time  $T_p \sim 1/m_Q \sim 0.05 0.15 \text{ fm/c}$

 $\Rightarrow$  Tool to test pQCD calculations



- \* Nuclear environment influence: p-A collisions  $\Rightarrow \Rightarrow p$ -Pb data coming in Jan. 2013
  - Shadowing (PDF modifications in nuclei) and Gluon saturation
    - $\Rightarrow$  Tool to study high density small-x gluons

[Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]



Why charm and beauty?

- \* Production in hard partonic collisions
  - Production time  $T_p \sim 1/m_Q \sim 0.05 0.15 \text{ fm/c}$

#### $\Rightarrow$ Tool to test pQCD calculations





- ★ Nuclear environment influence: p-A collisions ⇒ ⇒ p-Pb data coming in Jan. 2013
   ▶ Shadowing (PDF modifications in nuclei) and Gluon saturation
  - $\Rightarrow$  Tool to study high density small-x gluons
- \* Effects in a QGP: A-B collisions
  - Thermalisation in the QGP (low  $p_T$ )
    - Medium transport properties
  - ► Energy loss in the QGP (high p<sub>T</sub>)
    - Medium density and size
    - Color charge (Casimir factor) :  $\Delta E_{u,d,s} < \Delta E_g$
    - Parton mass (dead cone effect) :  $\Delta E_b < \Delta E_c < ...$

#### $\Rightarrow$ Probe of the QCD medium

 $\Rightarrow$  Pb-Pb data in 2010 + 2011

- $\Rightarrow$  dN/dpt, RAA, v<sub>2</sub>
- $\Rightarrow$  dN/dpt, R<sub>AA</sub>, v<sub>2</sub>
- $\Rightarrow$  compare to light hadrons
- $\Rightarrow$  compare c and b production

W. Horowitz, Tu, Plenary, 12:30

[Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]

Z. Conesa del Valle

















## HEAVY FLAVOR MEASUREMENTS



| LHC Run | Data sample    | HF electrons                                                                               | Beauty electrons                                  | HF muons                                                | ${ m D}^{0}/{ m D}^{+}/{ m D}^{*+}$                         | ${ m D_s}^+$                          |
|---------|----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|
| 2010    | pp, 7 TeV      | 2.6 nb <sup>-1</sup> (MB trig)<br>arXiv: 1205.5423                                         | 2.2 nb <sup>-1</sup> (MB trig)<br>arXiv:1208.1902 | 16.5 nb <sup>-1</sup> (Muon trig)<br>PLB 708 (2012) 265 | 5 nb <sup>-1</sup> (MB trig)<br>JHEP 01 (2012) 128          | 5 nb <sup>-1</sup><br>arXiv:1208.1948 |
| 2010    | PbPb, 2.76 TeV | 2.0 μb <sup>-1</sup> (0-80%)<br>MB trig.                                                   | chà là mart                                       | 2.7 μb <sup>-1</sup> (Muon trig)<br>arXiv:1205.6443     | 2.12 μb <sup>-1</sup> (0-80%)<br>arXiv: 1203.2160           | _                                     |
| 2011    | pp, 2.76 TeV   | 0.5 (11.9) nb <sup>-1</sup> of<br>MB(EmCal) trig                                           | 0.5 (11.9) nb <sup>-1</sup><br>of MB(EmCal) trig  | 19 nb <sup>-1</sup> (Muon trig)<br>arXiv:1205.6443      | 1.1 nb <sup>-1</sup> (MB trig)<br>JHEP 07 (2012) 191        | _                                     |
| 2011    | PbPb, 2.76 TeV | 22 (37) μb <sup>-1</sup> in 0-10%<br>6 (34) μb <sup>-1</sup> in 20-40%<br>MB (EMCAL) trig. | dia franti                                        | die geweiten                                            | 28 μb <sup>-1</sup> (0-7.5%)<br>6 μb <sup>-1</sup> (15-50%) | 28 μb <sup>-1</sup> (0-7.5%)          |

#### \* List of HF talks:

- D. Caffarri: D mesons v<sub>2</sub>
- A. Grelli: D mesons RAA
- G.M. Innocenti :  $D_{s}^{+}$  meson in pp and Pb-Pb
- \* List of HF posters:
  - T. Aronsson : B electron vertexing in pp
  - S. Bjelogrlic : D<sup>\*+</sup>-hadron correlations
  - D.A.M. De Godoy : HF electron  $v_2$  at high  $p_T$  •
  - B.R. Hicks : HF electrons in pp at 2.76 TeV
  - M. Kweon : Beauty electrons

- S. Sakai : HF electron  $R_{AA}$  and  $v_2$
- X. Zhang: HF muon RAA
- G. Luparello : D\*+ meson v2
- T. Rascanu : HF electron v2 background
- R. Russo : D<sup>+</sup> meson in pp and Pb-Pb
- T.S. Sinha :  $J/\psi$  and HF muon vs multiplicity in pp
- D. Thomas : HF electron-hadron correlations

# **Proton-proton Results**

 $\sqrt{s} = 7 \text{ TeV } \& \sqrt{s} = 2.76 \text{ TeV}$ 



# HF DECAY LEPTONS (e,µ), PP $\sqrt{s=7}$ TeV





#### HF decay lepton differential cross sections are well described by pQCD calculations (FONLL)

[Cacciari et al arXiv:1205.6344 (2012)]

## **BEAUTY DECAY ELECTRONS, PP** $\sqrt{s=7}$ **TeV**



[ALICE Coll. arXiv:1208.1902 (2012)]

- Measurement of  $B \rightarrow e^{\pm}$ , |y| < 0.5₩
  - B hadrons ст ~ 500µm  $\Rightarrow$  Impact parameter cut (d<sub>0</sub>) e.g.  $|d_0| > 250 \mu m$  for  $p_T \sim 2.5 \text{ GeV/c}$
  - Subtraction of remaining background electrons with a cocktail.
- Total beauty cross section
- Evaluation of the  $c \rightarrow e^{\pm}$  cross section by subtraction from the inclusive heavy flavor electrons



[Cacciari et al arXiv:1205.6344 (2012)]

# D MESONS, PP $\sqrt{s=7}$ TEV

\*  $p_T$ -differential cross sections of D<sup>0</sup>, D<sup>+</sup>, D<sup>++</sup> measured in the 1 <  $p_T$  < 24 GeV/c range



[Cacciari et al arXiv:1205.6344 (2012)] [Kniehl et al, arXiv:1202.0439]

ALICE

# D MESONS, PP $\sqrt{s=7}$ TeV





[Kniehl et al, arXiv:1202.0439]

# D MESONS, PP $\sqrt{s=7}$ TeV





## MEASUREMENTS IN PP $\sqrt{s=2.76}$ TeV



[ALICE Coll. arXiv:1205.6443 (2012)]



Well described by pQCD calculations

#### **REFERENCE FOR PB-PB MEASUREMENTS**



#### HF muons: pp data at 2.76 TeV

- HF electrons and D mesons:
   7 TeV data scaled to 2.76 TeV
- Scaling: ratio of FONLL cross sections at the two energies
- D mesons and HF electron data at 2.76 TeV are compatible with 7 TeV data scaled to 2.76 TeV

#### HF electrons, |y| < 0.7



#### **REFERENCE FOR PB-PB MEASUREMENTS**



- HF muons: pp data at 2.76 TeV
- HF electrons and D mesons:
   7 TeV data scaled to 2.76 TeV
- \* Scaling: ratio of FONLL cross sections at the two energies
- D mesons and HF electron data at 2.76 TeV are compatible with 7 TeV data scaled to 2.76 TeV



# **Pb-Pb Results**

## $\sqrt{s_{NN}} = 2.76 \text{ TeV}$



## HEAVY FLAVOR ELECTRONS, 0-10%



- Data: 2011 Pb-Pb run,
   EMCAL + centrality triggers
   (normalization with MB sample)
- \* Electron identification: TPC+EMCAL
- Subtract background electrons
   from the inclusive electrons
- \* Background electrons:
  - $\pi^0$  + Dalitz( $\pi^{\pm}$ ,n) +  $\gamma$ -conversions via invariant mass analysis
  - Plus J/ψ cocktail based on pp data
     with (0.2 < R<sub>AA</sub>(J/ψ) < 0.8)</li>
- \* pp reference:
  - 7 TeV pp data scaled to 2.76 TeV
  - + FONLL at high pT



[ALICE Coll., arXiv:1205.5423 (2012)] [ATLAS Coll., PLB 707:438-45]



Z. Conesa del Valle

#### HEAVY FLAVOR ELECTRONS, 0-10%





ALI-PREL-31917



### HEAVY FLAVOR MUONS, 0-10%



- \* Data: 2010 Pb-Pb run, MB + muon triggers
- \* Subtract background muons from  $\pi$ , K decays
- \* Background muons:  $\pi$ , K extrapolated from mid-rapidity measurements. Consider  $R_{AA}^{\pi}(y=0)$ ,  $R_{AA}^{K}(y=0)$ , and let vary 0 <  $R_{AA}^{\pi,K}(y-forward)$  < 2  $R_{AA}^{\pi,K}(y=0)$
- \* pp reference: pp data at 2.76 TeV

#### X. Zhang, Thu, Parallel 7A, 17:50

[ALICE Coll. arXiv:1205.6443 (2012)]

#### HEAVY FLAVOR MUONS, 0-10%





#### Suppression by a factor of 2-4 in 0-10%

X. Zhang, Thu, Parallel 7A, 17:50

[ALICE Coll. arXiv:1205.6443 (2012)]





ALI-PREL-32410

\* Data: 2011 Pb-Pb run, MB + centrality triggers

- Prompt D mesons = inclusive D mesons D mesons from B decays
- \* pQCD-based subtraction of D from B decays, with the constrain 1/3 < R<sub>AA</sub>(DfromB)/R<sub>AA</sub>(D) < 3</p>
- \* pp reference: 7 TeV data scaled to 2.76 TeV + high  $p_T$ -pQCD-extrapolation

# $D^{o}$ , $D^{+}$ , $D^{*+}$ MESONS, O-7.5%



ALI-PREL-32410

- \* Data: 2011 Pb-Pb run, MB + centrality triggers
- Prompt D mesons = inclusive D mesons D mesons from B decays
- \* pQCD-based subtraction of D from B decays, with the constrain 1/3 < R<sub>AA</sub>(DfromB)/R<sub>AA</sub>(D) < 3</p>
- \* pp reference: 7 TeV data scaled to 2.76 TeV + high  $p_T$ -pQCD-extrapolation

Z. Conesa del Valle

# $D^{o}$ , $D^{+}$ , $D^{*+}$ MESONS, O-7.5%



ALI-PREL-32410

- \* Data: 2011 Pb-Pb run, MB + centrality triggers
- Prompt D mesons = inclusive D mesons D mesons from B decays
- \* pQCD-based subtraction of D from B decays, with the constrain 1/3 < R<sub>AA</sub>(DfromB)/R<sub>AA</sub>(D) < 3</p>
- \* pp reference: 7 TeV data scaled to 2.76 TeV + high  $p_T$ -pQCD-extrapolation

Z. Conesa del Valle





A. Grelli, Thu, Parallel 6A, 14:00

# $D^{o}, D^{+}, D^{*+}$ MESONS, O-7.5%



# D°, D+, D\*+ MESONS, O-7.5%



- Extended measurement to 1<pr<36 GeV/c</pre>
- Suppression by up to a factor of 5 at  $p_T \sim 10$  GeV/c in 0-7.5%

## FIRST $D_s^+$ MESON MEASUREMENT, 0-7.5%



Expectation: relative enhancement of the strange/non-strange D mesons at intermediate  $p_T$  - charm in-medium hadronization ?



- First measurement of D<sub>s</sub><sup>+</sup> dN/dp<sub>T</sub> and R<sub>AA</sub>
- Suppression by a factor of 3-5 for p<sub>T</sub>~8-12 GeV/c
- → Similar to that of the  $D^0$ ,  $D^+$ ,  $D^{*+}$

G.M. Innocenti, Wed, Parallel 4A, 12:20

[I. Kuznetsova, J. Rafelski, Eur.Phys.J.C51:113-133 (2007)] [M. He, et al, arXiv:1204.4442] [A. Andronic, et al, arXiv:0708.1488v3]

## First $D_s^+$ meson measurement, 0-7.5%



Expectation: relative enhancement of the strange/non-strange D mesons at intermediate  $p_T$  - charm in-medium hadronization ?



- First measurement of Ds<sup>+</sup> dN/dp<sub>T</sub> and RAA
- Suppression by a factor of 3-5 for p<sub>T</sub>~8-12 GeV/c
- → Similar to that of the  $D^0$ ,  $D^+$ ,  $D^{*+}$

G.M. Innocenti, Wed, Parallel 4A, 12:20

[I. Kuznetsova, J. Rafelski, Eur.Phys.J.C51:113-133 (2007)] [M. He, et al, arXiv:1204.4442] [A. Andronic, et al, arXiv:0708.1488v3]



- \* Heavy flavor is suppressed up to high pt... Azimuthal dependence?
- \* Address path length dependence of HQ energy loss at high  $p_T$ ?
- \* Collective motion (flow) at low  $p_T$ ?



$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{N_0}{2\pi} \left(1 + 2v_1 \cos(\varphi - \Psi_1) + \frac{2v_2 \cos[2(\varphi - \Psi_2)]}{2\pi} + \dots\right)$$



#### HF ELECTRON $V_2$ , 20-40%





### HF ELECTRON $V_2$ , 20-40%



Heavy flavor electron v<sub>2</sub>>0 at low p<sub>T</sub>
 (>3σ effect in 2<p<sub>T</sub><3 GeV/c)</li>



★

\*

\*

### D MESON V2



 $\Psi_{\text{EP}}$ 

- \* Data: 2011 Pb-Pb run, MB + centrality triggers
- \*  $v_2$  measured with the event plane method



- Consistency among D meson species (D<sup>0</sup>, D<sup>+</sup>, D<sup>\*+</sup>)
- → Indication of non-zero D meson  $v_2$  (3 $\sigma$  effect in 2<p<sub>T</sub><6 GeV/c)

D. Caffarri, Thu, Parallel 6A, 14:40

1  $\pi N^{\text{In-Plane}} - N^{\text{Out-Ot-Plane}}$ 

 $v_2 = \frac{1}{R_2} \frac{1}{4} \frac{1}{N^{\text{In-Plane}} + N^{\text{Out-Ot-Plane}}}$ 

R<sub>2</sub>: event plane resolution

#### D MESON V2





- Consistency among D meson species (D<sup>0</sup>, D<sup>+</sup>, D<sup>\*+</sup>)
- → Indication of non-zero D meson  $v_2$  (3 $\sigma$  effect in 2<p<sub>T</sub><6 GeV/c)
- Hint of centrality dependence at low pT

Z. Conesa del Valle

D. Caffarri, Thu, Parallel 6A, 14:40

#### D° RAA VS EVENT PLANE, 30-50%



#### D. Caffarri, Thu, Parallel 6A, 14:40



- Larger suppression OutOfPlane than InPlane up to  $p_T \sim 10 \text{ GeV/c}$ 
  - might indicate elliptic flow at low pt
  - might indicate longer path length at high  $p_T$

# **Comparison with data and models**





#### **R**AA CENTRALITY DEPENDENCE





 $\rightarrow$  D mesons and HF muon R<sub>AA</sub> at high-p<sub>T</sub> show a similar centrality trend

#### **R**AA CENTRALITY DEPENDENCE





[ALICE Coll. arXiv:1203.2160 (2012)] [ALICE Coll. arXiv:1205.6443 (2012)]

- D mesons and HF muon  $R_{AA}$  at high-p<sub>T</sub> show a similar centrality trend
- Data not conclusive on charged particles  $R_{AA} < D$  mesons  $R_{AA}$

#### **R**AA CENTRALITY DEPENDENCE





- → D mesons and HF muon  $R_{AA}$  at high-p<sub>T</sub> show a similar centrality trend
- → Data not conclusive on charged particles  $R_{AA}$  < D mesons  $R_{AA}$
- → Non-prompt J/ $\psi$  (CMS) consistent with HF muon R<sub>AA</sub>

### RAA OF OPEN AND HIDDEN CHARM





- Similar trend of D mesons and  $J/\psi$  at low and high  $p_T$ 
  - $2 < p_T < 5$  GeV/c D (|y| < 0.5) vs inclusive J/ $\psi$  (ALICE, 2.5 < y < 4.0)
  - p<sub>T</sub>≈6 GeV/c D (|y|<0.5) vs prompt J/ψ (CMS,|y|<2.4)</p>



Similar HF decay e (|y|<0.6) and  $\mu$  (2.5<y<4.0) R<sub>AA</sub> in 0-10%



<sup>[</sup>ALICE Coll. arXiv:1205.6443 (2012)]



Similar HF decay e (|y|<0.6) and µ (2.5<y<4.0) R<sub>AA</sub> in 0-10%

<sup>[</sup>ALICE Coll. arXiv:1205.6443 (2012)]



Similar HF decay e (|y|<0.6) and µ (2.5<y<4.0) R<sub>AA</sub> in 0-10%

- → they are also comparable with D mesons  $R_{AA}$  (|y|<0.5) in 0-7.5% considering the semileptonic decay kinematics ( $p_T^e \sim 0.5 p_T^B$  at high  $p_T$ )
- ⇒ D R<sub>AA</sub> shows a similar trend as charged particles and  $\pi^{\pm}$  in 0-10%

[ALICE Coll. arXiv:1205.6443 (2012)]







- Similar HF decay e (|y| < 0.6) and  $\mu$  (2.5<y<4.0) R<sub>AA</sub> in 0-10%
- → they are also comparable with D mesons  $R_{AA}$  (|y|<0.5) in 0-7.5% considering the semileptonic decay kinematics ( $p_T^e \sim 0.5 p_T^B$  at high  $p_T$ )
- → D R<sub>AA</sub> shows a similar trend as charged particles and  $\pi^{\pm}$  in 0-10%

[ALICE Coll. arXiv:1205.6443 (2012)]

### MODELS DESCRIPTION OF RAA





ALI-PREL-34702

- → HF decay µ & D mesons R<sub>AA</sub> suppression in the most central collisions can not be explained by shadowing alone for p<sub>T</sub>>4 GeV/c
   ⇒ likely a final state effect
   ⇒ need pPb data to quantify initial state effects
- Models describe reasonably well both HF decay  $\mu$  and D mesons RAA

#### MODELS DESCRIPTION OF RAA





- Models predict reasonably well both charged particles and D mesons RAA
- \* AdS/CFT drag coefficients underestimate the charm  $R_{AA}$  and have limited predictive power for the light flavor  $R_{AA}$ .

#### HEAVY FLAVOR ELECTRON RAA & V2





#### $\rightarrow$ The simultaneous description of HFe R<sub>AA</sub> and v<sub>2</sub> is challenging

#### D MESON RAA & V2





#### $\rightarrow$ The simultaneous description of D mesons $R_{AA}$ and $v_2$ is challenging

**S**UMMARY



 HF e, HF µ & D mesons are suppressed in the most central collisions

In sum...

- First measurement of  $D_{s}^{+}$  meson in HIC
- Charged particles and pions have a similar  $p_T$  and centrality trend than D meson  $R_{AA}$
- \* HF azimuthal anisotropy:
  - v<sub>2</sub>>0 for HFe (D mesons) at 2<p<sub>T</sub><3 GeV/c</li>
     (2<p<sub>T</sub><6 GeV/c)</li>
  - Hint of centrality dependence at low  $p_T$  (D<sup>0</sup>)
- HQ energy loss models reproduce reasonably well heavy flavor R<sub>AA</sub> measurements. Challenging simultaneous description of R<sub>AA</sub> and v<sub>2</sub>



Z. Conesa del Valle

# Backup



## BEAUTY DECAY ELECTRONS, PP $\sqrt{s=7}$ TeV





- \* Measurement of  $B \rightarrow e^{\pm}$ 
  - B hadrons lifetime (cT ~ 500µm)
     ⇒ Selection on impact parameter (d₀)
     |d₀(µm)| > 64 + 780 exp(-0.56 p⊤(GeV/c))
  - Electron identification : TPC+TOF
  - Background subtraction : cocktail of measured π<sup>0</sup>, η, J/ψ, Y, D<sup>0</sup>, D<sup>+</sup>, D<sup>\*+</sup> + simulated light hadrons, γ, Λ<sub>c</sub>,...



Z. Conesa del Valle

## BEAUTY DECAY ELECTRONS, PP $\sqrt{s=7 \text{ TeV}}$





#### CHARM & BEAUTY CROSS SECTIONS





#### [ALICE Coll. JHEP 07 (2012) 191]

- Evaluated the total charm and beauty production cross sections.
- Their cross section evolution with  $\int s$  is well described by pQCD.

#### **D** MESON PP 2.76TEV, THE REFERENCE





[ALICE Coll. JHEP 07 (2012) 191]

Z. Conesa del Valle



#### HF ELECTRON BACKGROUND V2



#### HFE $R_{AA}$ and $V_2$ at RHIC and LHC





- Similar magnitude of heavy flavor electron R<sub>AA</sub> (3<p<sub>T</sub><9 GeV/c) and v<sub>2</sub> (1.5<p<sub>T</sub><4 GeV/c) at √s<sub>NN</sub>=200GeV (PHENIX) and √s<sub>NN</sub>=2.76TeV (ALICE)
- \* Caveat: c/b contribution to the HF electron spectra may differ at RHIC and LHC

#### D MESON V<sub>2</sub> DETAILS









#### **D** MESON RAA





#### SYSTEMATICS ON D MESON RAA





ALI-PUB-14238

### D<sup>o</sup> R<sub>AA</sub> vs Event Plane vs Theory







### MODELS DESCRIPTION OF RAA

[ALICE Coll. arXiv:1203.2160 (2012)]



- \* Models predicting reasonably well both charged particles and D meson  $R_{AA}$ :
  - I. Radiative energy loss + D meson in-medium dissociation (tuned to jet LHC data)
  - II. Radiative + collisional energy loss (tuned to RHIC data)
  - VII. Radiative + collisional energy loss (tuned to RHIC data)
- \* AdS/CFT drag coefficients (III) underestimate the charm  $R_{AA}$  and have limited predictive power for the light flavor  $R_{AA}$ .

### HEAVY FLAVOR ELECTRON RAA & V2



- \* BAMPS model: HQ transport with collisional energy loss in expanding QGP. Seems to over-suppress HFe  $R_{AA}$ , while it is consistent with HFe  $v_2$ .
- \* Rapp: heavy quarks transport with in-medium resonance scattering and coalescence. Consistent with HFe R<sub>AA</sub>, but seems to underestimate HFe v<sub>2</sub>.
- The simultaneous description of HFe  $R_{AA}$  and  $v_2$  is challenging



## D MESON RAA & V2



- \* Some models can describe  $v_2$  but they seem to underestimate  $R_{AA}$ .
  - Models with collisional and radiative Eloss (Alichelin et al)
  - HQ transport with collisional energy loss in expanding QGP (BAMPS)
- \* Others can describe  $R_{AA}$  but they seem to underestimate  $v_2$ 
  - Evaluate energy loss but not the hydrodynamical expansion (WHDG and Beraudo et al.)
- \* Others seems to underestimate  $v_2$  and it slightly overestimates  $R_{AA}$ 
  - HQ transport in expanding QGP with resonance scattering (Rapp et al.)

#### Challenging simultaneous description of D meson R<sub>AA</sub> and v<sub>2</sub>.

