Isolated Photon – Hadron Correlations

Nicolas Arbor for the ALICE collaboration

Quark Matter 2012 – Washington D.C. – 14/08/2012

Laboratoire de Physique Subatomique et de Cosmologie

Motivations

Probe transport properties of QCD medium via parton fragmentation :

- photon-tagged jets (without jet reconstruction)
- analysis method on pp data to be used as a baseline for Pb-Pb

Observables

Imbalance parameter :

Fragmentation function

ALICE

- x_E distribution describes fragmentation function for 0.2 < x_E < 0.8
- γ-hadron correlations mainly reflect quark fragmentation

7 TeV pp data (2011)

Detectors involved

- Photons are reconstructed and identified using EMCal
- Charged hadron tracks are reconstructed using TPC+ITS

EMCal trigger

- Use **EMCal trigger** capabilities to enrich high- p_{T} photons statistics
- Threshold $\approx 5 \text{ GeV}/c \Leftrightarrow \text{gain factor} \approx 3000 \text{ for } p_T > 8 \text{ GeV}/c$
- Analysis used about 10M triggered events (L_{int} ≈ 500 nb⁻¹)

Electromagnetic Calorimeter

Clusterizer

Shower shape

See M. Cosentino poster 456 – 16/08/2012

Analysis strategy

Isolation

Select direct photons :

- most of direct photons are isolated, most of decay photons are not (jet)
- isolation parameters : cone radius $R = \sqrt{\Delta \eta^2} + \Delta \varphi^2$, $p_T^{threshold}$

Quark Matter 2012 - Nicolas Arbor

Shower shape : purity estimate

- Isolated clusters sample = isolated photons + background
- Binned likelihood fit of the shower shape distribution :

combined signal (MC) and background (data) shower shape to fit data

x_E isolated clusters

 $x_F^{\pi 0 \, iso}$

D

clusters iso

• Underlying event subtracted

Quark Matter 2012 - Nicolas Arbor

x_F isolated π^0

 $x_E^{\pi 0 \, iso}$

-p

p

x_E isolated photons

$x_E \pi^0$: slope parameter (1)

- Inclusive hadron-hadron correlation : jet energy unknown
- Isolated π^0 : E_{π^0} samples a large fraction of $E_{parton} \Leftrightarrow \langle z_{\pi^0} \rangle = 0.8$ (Pythia+cuts)

$x_E \pi^0$: slope parameter (2)

- Compare slopes from isolated π^0 with fragmentation function
- Isolated π^0 slopes sample <z> ≈ 0.8

Isolated photons : Pb-Pb 2.76 TeV

Photon identification on Pb-Pb data :

- Started to separate isolated photons from background
- Still work needed to understand the more complex background (flow)

Summary and Outlook

• Establish global shape of fragmentation function through the measurement of isolated photon-hadron correlations in Vs = 7 TeV pp collisions in the p_T range [8-25] GeV/c

- Extract isolated π^0 slope parameter to study fragmentation bias in using isolated π^0 hadron correlations
- Next : measure medium modified x_E distribution in Pb-Pb in the same p_T range

See M. Cosentino poster 456 – 16/08/2012

 π^0 – hadron correlations in pp and Pb-Pb collisions

> See X. Zhu poster 446 – 16/08/2012

Isolation

Experimental aspects

Background from decay

ALICE PPR, vol.II

EMCal shower shape

• Semi-converted photons from π^0

See M. Cosentino poster 456 – 16/08/2012

Isolation criteria

π^0 identification

Systematics uncertainties

Main systematic uncertainties are :

- Shower shape MC / Data
- Likelihood fit parameters (binning, range)
- Background template composition (signal contamination, shower shape)
- Underlying event subtraction
- Detectors effects correction

x _E	systematics
[0-0.1]	24%
[0.1-0.2]	10%
[0.2-0.3]	13%
[0.3-0.4]	14%
[0.4-0.5]	15%
[0.5-0.6]	18%
[0.6-0.7]	25%
[0.7-0.8]	26%
[0.8-0.9]	23%
[0.9-1.0]	32%

Isolated $\pi^0 < z >$

Isolated π⁰ slopes : KKP

Medium modified FF

X.N Wang et al., PhysRevLett 77 231 (1996)

Quark Matter 2012 - Nicolas Arbor