Overview of results on heavy flavour and quarkonia from the CMS collaboration

Camelia Mironov (LLR/Ecole polytechnique) ERC grant "QuarkGluonPlasmaCMS" for the CMS Collaboration

Quark Matter conference, Washington DC August 16th, 2012

camelia.mironov@cern.ch Quark Matter 2012, Washington DC

Outline

- Heavy quarks and QGP
- C µ S
- 2^{nd} year of PbPb@LHC - J/ ψ , ψ (2S), Υ (1S,2S,3S) - B \rightarrow J/ ψ
- The big picture

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

camelia.mironov@cern.ch Quark Matter 2012, Washington DC

Heavy quarks and QGP

- Produced early in the collision
 - They map the evolution of the medium
 - Their measurements reflect the medium characteristics

Open heavy flavour (HF)

- Theoretically:
 - $-R_{AA}^{light} < R_{AA}^{D} < R_{AA}^{B}$
 - Interplay of collisional and radiative energy loss
- Experimentally:
 - high-p_T non-photonic
 electrons as suppressed as
 light hadrons
- Essential to separate charm from bottom

Open HF: status before 2nd PbPb@2.7TeV

- LHC: First unambiguous separation in heavy-ion collisions of charm and bottom
 - One giant step for HI, one (first) small step for understanding heavy vs light parton energy loss differences

JHEP 1205 (2012) 063 arXiv:1205.6443 EPJC 72 (2012) 19<u>45</u>

Hidden heavy flavours

arXiv:0901.3831

	Ψ(2S)	Υ (3S)	Υ (2S)	J/ψ	Υ (3S)
$\Delta E(GeV)$	0.05	0.20	0.54	0.64	1.10

- Onia state in a deconfined, colour charged medium: Debye screening
 - − if $\lambda_D(T) < r_0 \rightarrow$ screening → melting of the bound state → yields suppressed
 - Screening at different T for different states → sequential melting
- Onia: thermometer for the QGP

Charmonia: status before 2nd PbPb@2.7TeV

- All suppressed, but no clear pattern/picture
- Interplay of hot and cold medium effects
 - Shadowing, nuclear absorption
 - Regeneration, colour screening
 - feed-down (p_T-dependent)
- Quarkonium production in pp is not fully understood theoretically

Bottomonia: status before 2nd PbPb@2.7TeV

- Ground state suppressed
 - ~50% feed-down contribution above $p_T > 8GeV/c$
- Excited states more suppressed than ground state

PRL 107 (2011) 052302 JHEP 1205 (2012) 063

Muon reconstruction

- Muons: silicon tracker + muon subdetectors
 - Tracker p_T resolution: 1-2% up to $p_T \sim 100~GeV/c$
 - Separation of quarkonium states
 - Displaced tracks for heavy-flavour measurements

(di)Muon acceptance

2nd PbPb run at the LHC

Dimuons with muon $p_T > 4 \text{ GeV/c}$

Charmonia

camelia.mironov@cern.ch Quark Matter 2012, Washington DC

R_{AA} prompt J/ ψ

- Centrality (p_T, y integrated): smooth increase of R_{AA}
 - 0-5% factor ~5 suppression
 - 60-100% factor ~1.4 suppression

• y and p_T (centrality integrated): no significant dependence

R_{AA} prompt J/ ψ : double-differential

- 6.5 < p_T < 30 GeV/c: no rapidity dependence
- 1.6< |y|<2.4: low-p_T little less suppressed than high-p_T CMS-PAS HIN-12-014

R_{AA} prompt J/ ψ : theory

- High- p_T : no need for regeneration to describe data
- Treatment of onia energy loss similarly as open heavy flavour energy loss, without colour-octet included, is not supported by data

ψ (2S) vs J/ ψ : PbPb 0-20 %

• We do see ψ (2S) at high-p_T and low-p_T in PbPb

ψ (2S) vs J/ ψ : pp vs PbPb (0-20%)

Raw ratios: $\mathbf{R}_{\psi(2S)} = \mathbf{N}_{\psi(2S)} / \mathbf{N}_{J/\psi}$ - High-p_T: $\mathbf{R}_{\psi(2S)}^{PbPb} \sim 0.5 \times \mathbf{R}_{\psi(2S)}^{Pp}$ - Low-p_T: $\mathbf{R}_{\psi(2S)}^{PbPb} \sim 5 \times \mathbf{R}_{\psi(2S)}^{Pp}$ (low significance)

Bottomonia

camelia.mironov@cern.ch Quark Matter 2012, Washington DC

22

Bottomonia: theory

• Against religion: regeneration for the excited state, absorption/ shadowing to be considered

23

Transition slide ...

b-quark energy loss: non-prompt J/ ψ

R_{AA}: Non-prompt J/ ψ (B \rightarrow J/ ψ)

- Centrality (p_T, y integrated): slow decrease of R_{AA}
 - 50-100%: factor ~1.4
 - 0-5%: factor ~2.5
- y (p_T, centrality integrated): hints of less suppression at mid-rapidity
- $p_T(y, centrality integrated)$: hints of increasing suppression at high- p_T

Non-prompt J/ψ : double-differential

- $6.5 < p_T < 30 \text{ GeV/c: hint of}$ 1.6more suppression at forward y supp
- **1.6** < |y| < **2.4**: hint of less suppression for lower p_T

Light vs Heavy partons energy loss

- At low-p_T: different suppression pattern than light
- At high- p_T : b and light similar suppression

EPJC 72 (2012) 1945

CMS-PAS HIN-12-003 CMS-PAS HIN-12-004 CMS-PAS HIN-12-014 28

$B \rightarrow J/\psi$: theory

Vitev: J. Phys.G35 (2008) 1040[']11 + private communications Horowitz: arXiv:1108.5876 + private communications Buzzatti, Gyulassy: arXiv: 1207.6020+ private communications He, Fries, Rapp: PRC86(2012)014903+ private communications

• Radiative energy loss not enough to describe data

Summary: there is order ...

1) Closed charm and beauty: Yes, we can!

• The sequential melting map is experimentally drawn

- Map includes: hot and cold effects (feed-down, nuclear absorption (pPb run), etc)
- Looser bound states are more suppressed than the tighter bound states

h Quark Matter 2012, Washington DC

2) Open charm and beauty: Yes, it does!

Quark Matter 2012, Washington DC

