Identified charged hadron production in Pb-Pb collisions at the LHC with the ALICE experiment

Leonardo Milano

Università degli Studi & INFN, Torino, Italy

On behalf of the ALICE Collaboration
Outline

- **PID in ALICE: detectors and techniques**
 ‣ some details on Particle Identification (PID) in ALICE

- **Identified particle spectra in central (0-5%) Pb-Pb collisions**
 ‣ \(\pi, K, p\) spectra in central (0-5%) Pb-Pb collision at \(\sqrt{s} = 2.76\) TeV
 ‣ comparison with different models and RHIC data

- **p_T-spectra as a function of event-by-event flow**
 ‣ flow vector definition
 ‣ jet contamination estimation
 ‣ spectra modification in events with high elliptic flow (30-40% centrality)

- **Thermal production of hadrons in central (0-20%) Pb-Pb collisions**
 ‣ comparison with RHIC and thermal model prediction
 ‣ thermal fit to integrated particle yields in ALICE

- **Summary**
PID in ALICE: detectors and techniques
Detector description

Detector components: ZDC, EMCAL, HMPID, TRD, PMD, V0, TPC, TOF, ITS, PHOS, Dipole magnet, Absorber, Tracking chambers, Muon filter, Trigger chambers.
Detector description

In this analysis:
- **Inner Tracking System (ITS)**
 - standalone tracker, extends low-p_T reach
 - energy loss in the silicon
Detector description

In this analysis:

- **Inner Tracking System (ITS)**
 - standalone tracker, extends low-p_T reach
 - energy loss in the silicon

- **Time Projection Chamber (TPC)**
 - main tracking system
 - energy loss in the gas
Detector description

In this analysis:

- **Inner Tracking System (ITS)**
 - standalone tracker, extends low-p_T reach
 - energy loss in the silicon

- **Time Projection Chamber (TPC)**
 - main tracking system
 - energy loss in the gas

- **Time of Flight (TOF)**
 - tracks extrapolated from ITS-TPC
 - resolution ~85ps (Pb-Pb)
Detector description

In this analysis:

- **Inner Tracking System (ITS)**
 - standalone tracker, extends low-p_T reach
 - energy loss in the silicon

- **Time Projection Chamber (TPC)**
 - main tracking system
 - energy loss in the gas

- **Time of Flight (TOF)**
 - tracks extrapolated from ITS-TPC
 - resolution ~85ps (Pb-Pb)

- **VZERO**
 - VZERO A (2.8<\(\eta\)<5.1)
 - VZERO C (-3.7<\(\eta\)<-1.7)
 - trigger, centrality selection, event plane calculation
In this analysis:

- **Inner Tracking System (ITS)**
 - standalone tracker, extends low-p_T reach
 - energy loss in the silicon

- **Time Projection Chamber (TPC)**
 - main tracking system
 - energy loss in the gas

- **Time of Flight (TOF)**
 - tracks extrapolated from ITS-TPC
 - resolution \sim85ps (Pb-Pb)

- **VZERO**
 - VZERO A ($2.8<\eta<5.1$)
 - VZERO C ($-3.7<\eta<-1.7$)
 - trigger, centrality selection, event plane calculation
PID Analyses

Secondary subtraction
DCA fit*

\[\text{counts} \]

\[\text{pp @ } \sqrt{s} = 7 \text{ TeV} \]

\[\pi^+ + \pi^- \]

\[1/\langle N_{xy}\rangle = (\text{GeV}/c)^{-2} \]

-3 -2 -1 0 1 2 3
dca

Identified particle spectra in central (0-5%) Pb-Pb collisions
Central (0-5%) Pb-Pb collisions

- Small extrapolation at low p_T
- Large radial flow
($<\beta_T> = 0.65 \pm 0.02 \sim 10\%$ higher w.r.t. RHIC)

Model comparison:
- **VISH2+1** (Viscous hydro)
- **HKM** (Hydro+ UrQMD)
- **Krakow** (viscous corrections that lower the effective T_{ch})

Data/Model

Central (0-5%) Pb-Pb collisions

Data:
- small extrapolation at low p_T
- large radial flow
 \(<\beta_T> = 0.65 \pm 0.02 \sim 10\% \text{ higher w.r.t. RHIC}\)

Model Comparison:
- **VISH2+1** (Viscous hydro)
- **HKM** (Hydro+ UrQMD)
- **Krakow** (viscous corrections that lower the effective T_{ch})

Hydro (with refined late fireball description) works at the LHC.

\[\frac{d^2N}{dp_T^2} \times \frac{dN}{dy} = \text{constant} \]

\[\pi^+ + \pi^- (\times 100)\]

\[K^+ + K^- (\times 10)\]

\[p + \bar{p} (\times 1)\]

Central (0-5%) Pb-Pb collisions

Data:
- small extrapolation at low p_T
- large radial flow
($<\beta_T> = 0.65 \pm 0.02 \sim 10\%$ higher w.r.t. RHIC)

Model comparison:
- **VISH2+1** (Viscous hydro)
- **HKM** (Hydro+ UrQMD)
- **Krakow** (viscous corrections that lower the effective T_{ch})
- **MUSIC** (EbyE, 3+1D Hydro, UrQMD): 100 events

Hydro (with refined late fireball description) works at the LHC.

p_T-spectra as a function of event-by-event flow

...to further investigate the hydro behavior of p_T-spectra...
Flow vector definition:

\[Q_{n,x} = \sum_i w_i \cos(n\phi_i), \]
\[Q_{n,y} = \sum_i w_i \sin(n\phi_i), \]

- \(i = \) channels of VZERO detector
- \(w_i = \) multiplicity of channel \(i \)
- \(\Phi_i = \) angle of channel \(i \)

Flow vector is a powerful tool to select events with different \(v_2 \)

see Sergey Voloshin (13 August)
Flow vector definition:

\[Q_{n,x} = \sum_i w_i \cos(n \phi_i), \]
\[Q_{n,y} = \sum_i w_i \sin(n \phi_i), \]

\(i = \) channels of VZERO detector
\(w_i = \) multiplicity of channel \(i \)
\(\Phi_i = \) angle of channel \(i \)

Flow vector is a powerful tool to select events with different \(v_2 \)

see Sergey Voloshin (13 August)

large rapidity gap

centrality selected: 30-40%
Flow vector definition:

\[Q_{n,x} = \sum_i w_i \cos(n \Phi_i), \]
\[Q_{n,y} = \sum_i w_i \sin(n \Phi_i), \]

- Flow vector is a powerful tool to select events with different \(v_2 \)

- Integrated elliptic flow at the LHC is \(\sim 30\% \) larger w.r.t. RHIC*
- Event-by-event this increase can be much larger

- If we integrate \(\cos(2\Phi) \) in \(2\pi \) we do not expect any modification of the \(p_T \)-spectrum
- We look at \(q_2 \) distribution: \(Q_2/\sqrt{\text{multiplicity}} \)

Flow vector distribution

\[q_2 = \frac{Q_2}{\sqrt{\text{multiplicity}}} \]

We want to select the 10% highest (lowest) elliptic flow events

Keep potential biases under control:

- **multiplicity bias**
 - \(v_2 \) increases with decreasing centrality*

- **jet contribution**
 - Is the large \(q_2 \) due to an increased jet contribution?

Leonardo Milano, Univ. & INFN, Torino, Italy

Quark Matter 2012
Checks on potential biases

- *Multiplicity bias*
- Centrality from tracks in the central barrel instead of VZERO
- Bin 30-40% obtained as the sum of 10 bins 1% wide

shift negligible
Checks on potential biases

- Multiplicity bias
 - centrality from tracks in the central barrel instead of VZERO
 - bin 30-40% obtained as the sum of 10 bins 1% wide

- Jet contribution:

Background:

\[p_{T_tot} = \text{total } p_T \text{ in the event} \]
\[\text{density} = \frac{p_{T_tot}}{\text{acceptance}} \]

Energy in a cone:

- seed particle: \(p_T > 5 \text{GeV/c} \)
- \(p_{T_sum} = \text{sum of } p_T \text{ in } R < 0.3 \)
- \(\text{area} = \pi \times R^2 \)
- \(p_{T_jet} = p_{T_sum} - \text{density} \times \text{area} \)
Checks on potential biases

- Multiplicity bias
 - centrality from tracks in the central barrel instead of VZERO
 - bin 30-40% obtained as the sum of 10 bins 1% wide

- Jet contribution:

Background:

\[p_{T_{tot}} = \text{total } p_T \text{ in the event} \]

\[\text{density} = p_{T_{tot}}/\text{acceptance} \]

Energy in a cone:

- seed particle: \((p_T>5\text{GeV/c}) \)
- \(p_{T_{sum}} = \text{sum of } p_T \text{ in } R<0.3 \)
- \(\text{area}=\pi \times R^2 \)
- \(p_{T_{jet}} = p_{T_{sum}} - \text{density} \times \text{area} \)

- method reliable only above \(~20 \text{ GeV/c}\)
- ratio is flat, “jet” contribution similar

![Cone Algorithm, Raw](image)

\(\text{charged raw jet } p_T \text{ (GeV/c)} \)
- Ratio of raw spectra, efficiency does not depend on q_2 selection

- Modification of the p_T-spectrum: large $q_2 \Rightarrow$ harder spectrum, opposite for small q_2

- Vanishing at high p_T: not due to jet contribution

p_T-spectra vs E-by-E flow

- **Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV**
- Centrality 30-40%

- **No q_2-selection**
- **10% highest q_2**
- **10% lowest q_2**

p_T (GeV/c)

η

- **VZERO-C**
- **central barrel**
- **VZERO-A**

spectra

q-vector
p_T-spectra vs E-by-E flow

- Ratio of raw spectra, efficiency does not depend on q_2 selection
- Modification of the p_T-spectrum: large $q_2 \Rightarrow$ harder spectrum, opposite for small q_2
- Vanishing at high p_T: not due to jet contribution
- Same effect for all the particles
- Hint of mass ordering?

Are v_2 and radial flow correlated?
Thermal production of hadrons
- Feed down correction: p_{STAR} (-37%) π_{PHENIX} (-10%)
- Decreasing ratios at the LHC?
- p/π and Λ/π different at the LHC
Thermal production of hadrons

- feed down correction: p_{STAR} (-37%) π_{PHENIX} (-10%)
- decreasing ratios at the LHC?
- p/π and Λ/π different at the LHC
- $T_{ch} = 164$ MeV from lower energies extrapolation

Thermal production of hadrons

- feed down correction: p_{STAR} (-37%) π_{PHENIX} (-10%)
- decreasing ratios at the LHC?
- p/π and Λ/π different at the LHC
- $T_{ch} = 164$ MeV from lower energies extrapolation

Thermal production of hadrons

- feed down correction: p_{STAR} (-37%) π_{PHENIX} (-10%)
- decreasing ratios at the LHC?
- p/π and Λ/π different at the LHC
- $T_{\text{ch}} = 164$ MeV from lower energies extrapolation

Integrated yields at midrapidity:
- data are feed down corrected,
- ϕ and K^{*0} not included in the fit

$T_{\text{ch}} = 152$ MeV from fit to LHC dN/dy

Thermal production of hadrons

- feed down correction: p_{STAR} (-37%) π_{PHENIX} (-10%)
- decreasing ratios at the LHC?
- p/π and Λ/π different at the LHC
- $T_{ch} = 164$ MeV from lower energies extrapolation
- $T_{ch} = 152$ MeV from fit

Integrated yields at midrapidity:
- data are feed down corrected,
- ϕ and K^* not included in the fit

$T_{ch} = 152$ MeV from fit to LHC dN/dy

Thermal production of hadrons

- Feed down correction: p\text{STAR} (-37%) \, \pi\text{PHENIX} (-10%)
- Decreasing ratios at the LHC?
- p/\pi and \Lambda/\pi different at the LHC
- T\text{ch} = 164 MeV from lower energies extrapolation
- T\text{ch} = 152 MeV from fit

Integrated yields at midrapidity:
- Data are feed down corrected,
- \(\varphi \) and \(K^0 \) not included in the fit

T\text{ch} = 152 MeV from fit to LHC dN/dy

- Possible extension*:
 - Hadronic interactions

Summary

- **Identified particle spectra in central (0-5%) Pb-Pb**
 - Strong radial flow in central collisions (~10% larger with respect to RHIC)
 - Models with a refined late fireball description are able to reproduce better the experimental data
Summary

- **Identified particle spectra in central (0-5%) Pb-Pb**
 - Strong radial flow in central collisions (~10% larger with respect to RHIC)
 - Models with a refined late fireball description are able to reproduce better the experimental data

- **p_T-spectra as a function of event-by-event flow**
 - Modification of the p_T-shape in the intermediate p_T-range when selecting high (low) elliptic flow events
Summary

- Identified particle spectra in central (0-5%) Pb-Pb
 - Strong radial flow in central collisions (~10% larger with respect to RHIC)
 - Models with a refined late fireball description are able to reproduce better the experimental data

- p_T-spectra as a function of event-by-event flow
 - Modification of the p_T-shape in the intermediate p_T-range when selecting high (low) elliptic flow events

- Thermal production of hadrons
 - Particle ratios consistent with RHIC except for p/π and Λ/π
 - Studies ongoing... improvement from experiments + feedback from theory
THANKS
- μ_B vanishing at the LHC
- K/π similar to RHIC, in agreement with thermal model prediction
- p/π below the expectations, same behavior observed in hydro model without explicit description of hadronic phase

Particle ratios

Data: ALICE, 0-20% (preliminary)
Thermal model
Best fit, $T=152$ MeV
Prediction, $T=164$ MeV
$\sqrt{s_{NN}}=2.76$ TeV

π^+

K^+

K^-

p

\bar{p}

Λ

Ξ^-

Ξ^+

Ω^-

Ω^+

ϕ

K^*

Leonardo Milano, Univ. & INFN, Torino, Italy
$v_2(p_T)$: SE (q$_2$ VZERO-A) vs unbiased

Cutting on q$_2$ from VZERO-A (2.8<η<5.1) and correlate tracks from TPC (-0.8<η<0.8) with EP from VZERO-C (-3.7<η<-1.7)

Cutting on q$_2$ from VZERO-C also investigated (see backup)

$v_2(p_T)$ for unbiased (black) and SE (5% high, 10% low) events

- Non-flow contributions significantly reduced using η gap
- Smaller ratios due to smaller flow and multiplicity → method sensitivity to the event shape
- $v_2 \sim$ shape (ratio almost constant) at least up to p_T=6 GeV/c
- Effect of event shape fluctuations becomes small for p_T>6 GeV/c

5% high q$_2$
10% low q$_2$
No q$_2$ selection