Chiral symmetry breaking in QCD and

related theories
(“ INSTANTON LIQUID 2”)
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For about a decade it is known that topological fluctuations -- instantons

-- are modified by the nonzero Polyakov line VEV and split into Nc dyons.

By now there is extensive lattice literature confirming this fact and

explaining certain observations by properties of such dyons, mostly at T=(1-2)Tc.
This talk report the first direct simulations of the statistical mechanics

of the “"dyonic vacuum”, using one-loop partition function.We found

that chiral symmetry breaking and Dirac eigenvalues spectra are strongly
affected by the LLbar dyon clustering. Among many consequences explaining
lattice data is the dependence on the chiral transition on the

number of fermion species Nf and the fermionic periodicity condition.




Nambu-Jona-Lasinio versus
the instanton liquid model

NJL (1961) introduced
hypothetical 4-fermion
interaction (chirally
symmetric)

2 parameters, G and
cutoff Lambda (about 1
GeV)

Good chiral physics,
pions etc (no confinement)

Eta’ also massless

Other particles like
sigma, rho,N = 2
const.quarks

Higher orders undefined

ES (1982)

It also describes all the chiral physics
correctly

It can be and was solved
Rho and nucleon are bound and
many correlators are well described

eta’ is now correct (repulsive
4-fermi term from ‘t Hooft makes

it heavy)




Instantons emerging from vacuum
quantum noise by * " cooling”
(MIT group, 1993), S and Q

Fig 5.8 Examples of cooling of lattice configurations




Instantons induce forces between
light quarks which are qualitatively
different from gluon exchanges
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prediction of ILM: the Zero Mode Zone

The tiny fraction 0.01% of fermionic states (about 1 per instanton) is
indeed enough to reproduce most of light quark hadronic physics

J.Negele, T.DeGrand,A.Hazenfratz
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The spectrum of the Dirac eigenvalues
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has a singularity:it 20
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. name|E M| mass 06 -
Dyons in |+ /
M|+ - v 0.5 1 ;/
SU(2) - |- |- | y
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. /7
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Nf is the number of fund.quarks

FIG. 1: (color online) The density of the topological clusters (in fm™*) versus the temperature T/T. of

IVI IS th e fe rm IO n ma SS the SU(2) pure gauge theory. The open blue circles show static dyons, identified as M-type, while the

open red diamonds are for calorons or L-type dyons [14]. The closed diamond at T'/T. = 1.5 is from [15],
in which L-type dyons were identified directly by fermionic zero modes and the value of the Polyakov loop

Wh ic h is a ISO d e pe n d e nt O n h O I O n O my at its center. The dashed and solid lines correspond to semiclassical expectations for M, L dyon density,
with parameters defined in the text.

At high T the density is small => o)

Neutral “molecules” of 2Nc dyons 13}

Here are its shape for SU(2)

In fact seen on the lattice as (G Gdual)
Where the field is filtered” using

“on the gap” modes

Gattringer, PRL 2002
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Instantons => Nc selfdual dyons
A

(van Baal et al)
<P> nonzero Polyakov line =

V. ste?
=> <A 4> nonzero ff:'l"’f"";;,f,,’,’,’,'{
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Dyonic plasma
3+1d long range

Instanton liquid

4d+short range

|.The chiral symmetry breaking/restoration in the
dyonic vacuum, ES and T.Sulejmanpasic,arXiv:1201.5624

2.The chiral... ll.Adjoint fermions, ES and T.Sulejmanpasic
3.QCD Topology at finite temperature: Statistical Mechanics of
Selfdual Dyons, PFaccioli and ES, in progress




Fermionic zero modes for arbitrary
periodicity parameter z

a1 (r) — solid, a»(r) — dashed
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FIG. 6: Plot shows profile of zeromode components «i,2, for four different values of =z =
0,0.2v/3,0.4v/3,0.5v/3,0.55v /3. Note that the zero mode delocalizes at z = 0.5v/3

The Dirac operator in the background of the dyon cubic lattice would connect only between the
left and the right chiral fermions, i.e. it would look like

( 0 0 S(ri1)  f(riz2) ... f(rlN)\
: . 0 Sf(ra1) f(re2) ... f(ran)
D = : 0 Fra) fraz) .. f(raw) (150)
Sf(ri1)  f(Qriz) ... f(rin) 0 0
f(r21) f(raz2) ... f(ran) 0 0
\f(r.z\n) f(rnz) ... f(rywN) 0] o )

where f(r) is given by
For) = [ dte pl@ — D PyL@) . (151)

where ¢ r(ZX), are zero mode solutions on top of dyons localized at £ = 0. Since the decay of




As a frst step toward the understanding of the dyonic ensembles, and their role in chiral sym-
mefry breaking estoration, we had formulated some stpliied models
For caleulation purposes it is convendent for these models to treaf the dyon density

=N =y =17 =y 137

(ich i also the same as the fnstanton densiy g, + Myppinstantn) 2 the basic dimensionel

quantity, providing the wnitsof ength n;/ ! Using such length units we put n; = 1 for a while, and
wil be expressing other dimensional quantities in these wnits. We will be working with traditional
periodic boves of some size L x L, with £ “lvge”, and thus put into such boses N, = I dyons

of each kind.

The re-weighting including
molecule

fermionic interaction

is in progress

Potentially stat.mech of dyonic
ensemble using Metropolis
Like we did for instantons in
1980’s
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FIG. 9: The spectrum of eigenvalues for several values A of a Dirac operator with in an ensamble of 108 L—L
pairs, with molecule sizes ranging from Ry, =0.05/M...0.75/M, with M = 0.57 and p,; = 1= 2pr.
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FIG. 10: Chiral condensate in the random molecule model. The

10



Many lattice observations are explained

Sensitivity to the fermionic boundary conditions

Introducing an arbitrary phase on the fermionic boundary condition, one can switch the fermionic
zero mode between the dyons: this has been demonstrated using artificial configurations for
calorons in [13].

The sensitivity appears at T>Tc: antiperiodic fermions restore chiral
symmetry
While periodic ones don’t! (in the quenched ensemble!)

This can be explained by the observation (Bruckmann ?) that
antiperiodic fermions have zero modes with heavy L, bar-L dyons
which form "clusters” or nuclei,

while periodic one have zero modes with the “non-twisted” M dyons
which are nearly randomly distributed

11



Statistical mechanics of
the dyons: 3 elements

® The moduli space metric
(Atiyah,Manton,Diakonov)

® The screening (ES,Pisarski-Yaffe, Diakonov)
® Fermion-induced factor (ES,Sulejmanpasic)

® First numerical implementation, 64 dyons
on 373, Faccioli+ES




moduli volume element

Following Gibbons and Manton [11] and Di-
akonov [6], the invariant volume element for
moduli metric can be approximated by the

(first power) of the determinant of certain ma-
trix G

Vdet § ~ det G (3)

The Jacobian determinant for one instan-
ton, or the LM dyon pair, has been calculated
by Diakonov, Gromov, Petrov and Slizovskiy
(DGPS) [9]. The nonzero modes lead to the so
called screening phenomenon to which we turn
in section II B. For SU(2) gauge group there are

two types of dyons m,n = L, M and G reads

1 1
G (47TVL+ pra— T Trom ) . (4)

1 1
_TT’LM 47TI/M + TT’LM

Let us now discuss the short-distance behav-
ior. Now, the V.s; = exp(—logG) has multi-
particle terms with all powers of 1/r. To make
sense of it, it is instructive to calculate it for
some examples of configurations. We can use
e.g. a “square” made of 2 L and 2 M dyons and
found that in all cases their combined effect can
be described by a weakening of the Coulomb.

. .screening
M = g"T*(Ne/3 + Ny /6) (11)

In this form one also finds it in the instanton
screening term, calculated by Pisarski and Yaffe
long ago [13]. The instanton size p and the
L — M separation are related in the well known
way

mp°T = (12)

relating the 4-d dipole of the instanton to the
3-d dipole of the dyon pair.

Let us now work out the corresponding gen-
eral formula for screening potential which holds
in the many-body case. The sum over all dyonic
contributions to A4 can be written as

(At = [ 2y

where now the sum runs over all dyons with
(; = %1 is the charge and r; = [¥ — Z;].

< (A4)2 >= 4’7'('2@@@3'7}']'

1>
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fermionic determinant

For the non-vanishing matrix element of the
Dirac operator between LL, the ij element in
each block is given by the (approximate) for-
mula [7]:

y e~ Mrij
T%JL = c
\/1 + Mrij

(17)

A. Single molecule case

Let us first consider the case in which there
is only one molecule, and denote with L and
L the index of the L—type dyons. This can
be viewed as the second order one-loop dia-
gram in 't Hooft effective Lagrangian, with two

vertices with 2Ny fermionic propagators in be-
tween. From Eq. (19) and (17) we get

det @b = |TLE‘2Nf — ¢ 2NyMrpp—log(1+Mrpf)
(20) 1/M
Neglecting the logarithmic dependence, the /
formula for the determinant for 1 molecule
(L, M, L, M) reads as en effective potential V

V = —logdetiD = 2N;M 7.1 (21)
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Al=1.5 L-M dyon correlator T=T_
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summary

first numerical simulation of the dyonic
system are under way

moduli (modified Coulomb)+ screening
(quasi-confinement O(r))+ fermions

LLbar clusters in a sea of M dyons at low
density (high T)

complicated liquid with chiral symmetry
breaking at high density




