Studies of the nuclear stopping power in PbPb collisions at 2.76 TeV with CMS

Hauke Wöhrmann KIT – Karlsruhe Institute of Technology for the CMS Collaboration

Quark Matter conference, Washington DC 15th Aug, 2012

Quark Matter 2012, Washington DC

Motivation

- CMS has almost complete η coverage, -6.6 < η < 5.2
- Forward coverage is essential to study parton structure for small fractional parton momentum x
- Pseudorapidity of the very forward calorimeter CASTOR (|η| up to 6.6) is very close to y_{beam} (~8 at 2.76 TeV)
 - Therefore we expect CASTOR near the peak of dE/dŋ
- Study the centrality dependence of the energy deposit at different pseudorapidities
- Determine the average energy-weighted relative pseudorapidity for different centralities and compare it with stopping data

The CMS Detector

CASTOR calorimeter design

- Cherenkov quartz-tungsten sampling calorimeter for CMS with quartz plates as active medium and tungsten as absorber
 → compact, radiation hard and fast
- 16 azimuthal sectors (semi-octants/towers) mechanically organised in two half calorimeters
- EM = $0.7\lambda = 20X_{0}$; HAD = $12 \times 0.7 = 9.24\lambda$; overall depth = 10λ

CASTOR cross-calibration to HF using pp minimum bias data @ 7 TeV

 Energy measured in HF & model dependent extrapolation using shape of model predictions

Systematic uncertainties

Total	22%
CASTOR alignment	16%
CASTOR non-compensation	5%
Extrapolation + model dependence	10%
HF energy scale	10%

Correction factors: $C(PbPb) = E_{gen}/E_{det}$

Correction factors to hadron level:

- EPOS vs QGSJetll \rightarrow 2% difference
- Variation of correction factors with centrality: within ± 3%

Hauke Wöhrmann

Quark Matter 2012, Washington DC

Cosmic Ray models used for correction:

- QGSJetII:
 - Gibov-Regge with pomeron net and loop corrections to all orders
 - The pomeron-pomeron coupling produces saturation effects
- EPOS 1.99 (retuned to LHC):
 - Gribov-Regge with energy sharing on parton level
 - Includes collective hydrodynamic effects for high energy densities
 - Implements a phenomenological model of gluon saturation

6

Energy η-density dE/dη(η,N_{part})

Data for $|\eta| < 5.2$ is from arXiv:1205.0206 (CMS E_T measurement)

- HYDJET 1.8 is very well tuned to the central rapidities.
- AMPT has a qualitative agreement to the data
- EPOS-LHC has good agreement for central data
- QGSJetII.3 describes peripheral data better

Energy η -density ratio R_{PC} peripheral vs. central

- Shape changes significantly in forward region
- Flattening region for central events at high pseudorapidity
- Data is challenging for models

Quark Matter 2012, Washington DC

8

Average energy-weighted relative pseudorapidity

 $(E_{N}:$ kinetic Energy per Nucleon =1.38 TeV)

- EPOS describes the data
- QGSJetII & AMPT describe the shape
- HYDJET is flat

Quark Matter 2012, Washington DC

9

Comparison to lower energy stopping power data

- Different observables:
 <δy>_E: energy-weighted relative η (filled red Markers)
 <δy>_B: mean net baryon production (open Markers)
- Solid line: fit by BRAHMS to low energy stopping data
- Dashed line: parameterization by BRAHMS for RICH data
- CMS data consistent with BRAHMS
 parameterization

Summary

- First CASTOR results with heavy ion data, used full set of CMS calorimetry
- Measured **dE/dn** over 11.8 units of pseudorapidity
- The R_{PC}(η, N_{part}) ratio for dE/dη changes shape with η and may hint at interesting physics at small-x
- First results on average energy-weighted relative pseudorapidity from CMS/LHC; nicely on track with observations at low energies in the context of stopping

BACKUP

CASTOR response

- Using first 5 front modules ($10\lambda \rightarrow 3.2\lambda$)
 - No bad channels
 - Same configuration as for pp measurement
- CASTOR energy: E = S(PbPb)C(PbPb)*K
 - S = signal
 - C = E_{gen}/E_{det} = hadron level correction factor
 - K = absolute calibration factor obtained via cross-calibration to HF
- CASTOR uncertainty
 - Energy scale: 22%
 - PbPb hadron level correction factor: 2%
 - Vertex distribution: 2%
 - Calorimeter noise: <1%
 - Total: 22%

Minimum bias data: run 133046 (Nominal B-field) / run 133239 (B = 0 T)

Control plots: CASTOR energy vs centrality

Quark Matter 2012, Washington DC

Transverse energy η -density dE_T/d η (η , N_{part})

Data for $|\eta| < 5.2$ is from arXiv:1205.0206 (CMS E_T measurement)

Quark Matter 2012, Washington DC

