Suppression of open bottom at high p_T via non-prompt J/ψ decays in PbPb collisions at 2.76 TeV with CMS

Mihee Jo
(Korea University)

for the CMS Collaboration

Quark Matter conference, Washington DC
17 August, 2012
Outline

• Introduction
• Compact muon solenoid
• Signal extraction
 – Prompt and non-prompt J/ψ separation
• Acceptance and efficiency
• Results
 – Non-prompt J/ψ R_{AA}
 – b-jet R_{AA}
• Summary
Bottom quark in hot and dense medium

- Bottom quark is a sensitive probe of the medium energy loss
 - Created at an early stage of collision and has long lifetime
 → Interacts with medium and loses energy
- Inelastic scattering - radiative energy loss
- Elastic scattering - collisional energy loss
- Dead-cone effect
 - Reduces small-angle gluon radiation for heavy quarks with moderate energy-over-mass values

\[R_{AA} = \frac{L_{pp}}{T_{AA} N_{MB}} \frac{N_{PbPb}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{PbPb}(\text{cent})} \]

\[R_{AA}(\text{light hadrons}) < R_{AA}(D) < R_{AA}(B) \]

Non-photonic decays from D and B mesons

Au+Au @ \sqrt{s_{NN}} = 200 \text{ GeV}

BDMPS (D+B decays) \hspace{1cm} DGLV (D decay only)

Radi. E. loss (D+B decays) \hspace{1cm} Radi. E. loss + Coll. E. loss (D+B decays)
Compact Muon Solenoid

CMS Detector

Pixels Tracker ECAL HCAL Solenoid Steel Yoke Muons

STEEL RETURN YOKE
~13000 tonnes

SUPERCONDUCTING SOLENOID
Niobium-titanium coil carrying ~18000 A

SILICON TRACKER
Pixels (100 x 150 μm²) ~1m² ~65M channels
Microstrips (80-180 μm) ~200m² ~9.6M channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
~76k scintillating PbWO₄ crystals

PRESHOWER
Silicon strips ~16m² ~137k channels

FORWARD CALORIMETER
Steel + quartz fibres ~2k channels

HADRON CALORIMETER (HCAL)
Brass + plastic scintillator ~7k channels

MUON CHAMBERS
Barrel: 250 Drift Tube & 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip & 432 Resistive Plate Chambers

Total weight: 14000 tonnes
Overall diameter: 15.0 m
Overall length: 28.7 m
Magnetic field: 3.8 T
Muon reconstruction in CMS

- Excellent muon identification and triggering (Muon system)
- High mass/momentum resolution (Tracker)
Dimuon spectrum in 2011 PbPb

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 2.76$ TeV
$\Upsilon(1,2,3S)$

$L_{\text{int}} (\text{PbPb}) = 147 \mu\text{b}^{-1}$

Events/(GeV/c2)

ρ, ω, ϕ
$\psi(2S)$
J/ψ

14 Aug, $14:15$
Parallel 1D, D. Moon

14 Aug, $16:45$
Parallel 2D, B. Guillermo

15 Aug, $12:00$
Parallel 4C B. Lamia

16 Aug, $11:05$
Plenary, C. Mironov

16 Aug, $9:45$
Plenary, R. de Cassagnac

$p_T^\mu > 4$ GeV/c

$m_{\mu\mu}$ (GeV/c2)

10

100

1000

10000

100000

Z
Inclusive J/ψ

- Reconstruct $\mu^+\mu^-$ vertex
- 2-D unbinned maximum likelihood fit of $\mu^+\mu^-$ mass and pseudo-proper decay length $l_{J/\psi}$

$N_{J/\psi}: 8525 \pm 177$
$\sigma = 35 \pm 1 \text{ MeV/c}^2$

$6.5 < p_T < 30 \text{ GeV/c}$
Cent. 0-100%

$|y| < 2.4$

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Events / (0.035 mm)

$\ell_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T}$
Signal Extraction in PbPb

- Dimuon mass distributions
 - Signal shape: Crystal Ball + Gaussian
 - Background shape: Exponential

- Dimuon $l_{J/\psi}$ distributions
 - Prompt J/ψ component
 Prompt J/ψ MC template modeled with resolution function includes the event-by-event uncertainty of $l_{J/\psi}$
 - Non-prompt J/ψ component
 Non-prompt J/ψ MC template uses $l_{J/\psi}$ distribution as a shape
 - Background component
 Fit events in mass sidebands to sum of 3 exponential decay functions
Efficiency and acceptance

- MC simulations with PYTHIA

- Acceptance
 - No acceptance for J/ψ at mid-rapidity with $p_T < 6.5$ GeV/c
 - At forward rapidity, acceptance for J/ψ with $p_T > 3$ GeV/c

- Efficiencies
 - Embedded signal in min-bias events simulated with HYDJET
 - Validated MC by comparing efficiencies measured with “Tag & Probe” in MC and data

|y| 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Acceptance

|y| 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Efficiency

CMS collaboration, JHEP 1205 (2012) 063
Non-prompt J/ψ R_{AA} vs. N_{part}

CMS Preliminary
$\sqrt{s_{NN}} = 2.76$ TeV

- Centrality dependent suppression of non-prompt J/ψ is observed
- Non-prompt J/ψ in the most central collision (0-10%) is suppressed by a factor of 2.5
Non-prompt J/ψ \(R_{AA} \) vs. \(p_T \) and \(|y| \)

- Low-\(p_T \) J/ψ is slightly less suppressed than high-\(p_T \) J/ψ
- Mid-rapidity J/ψ is slightly less suppressed than in forward rapidity
Non-prompt J/ψ R_{AA} vs. N_{part} & p_T, N_{part} & y

- All rapidity bins show centrality dependent suppression
- Low-p_T J/ψ is less suppressed than high-p_T J/ψ
Non-prompt J/ψ R_{AA} comparison

R_{AA}

CMS Preliminary
PbPb $\sqrt{s_{NN}} = 2.76$ TeV

- Vitev: 0-10%, $y \sim 0$
 - Rad E loss+CNM
 - Rad E loss+CNM+Dissoc

- WHDG: 0-80%, $y \sim 0$
 - Rad+Coll E loss

- Buzatti: 0-100%, $y \sim 0$
 - CUJET preliminary

- He,Fries,Rapp: 0-100%, $y \sim 0$
 - HF transport

- b-quarks: 0-100% $|\eta|<2.4$
 (via secondary $J/\psi(\mu^+\mu^-)$)

- R_{AA} of non-prompt J/ψ is described with theory calculations
 - Non-prompt J/ψ p_T for measurement and B p_T for theory curves
b-jets in heavy-ion collisions

- Jets from b-quark fragmentation are identified for the first time in heavy ion collisions
 - Jets are tagged by their secondary vertices
 - b-quark contribution is extracted using template fits to their secondary vertex mass distributions
b-jets in heavy-ion collisions

At $100 < \text{jet } p_T < 120$ GeV/c,
- Inclusive jet $R_{AA} = 0.50 \pm 0.01(\text{stat.}) \pm 0.06(\text{syst.})$
- b-jet $R_{AA} = 0.48 \pm 0.09(\text{stat.}) \pm 0.18(\text{syst.})$
Summary

- Non-prompt J/ψ is suppressed in PbPb collisions
- Distinct b-quark suppression pattern at low p_T is observed
- b-jets at high-p_T shows similar suppression

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN
J/ψ separation

- L_{xy}: The most probable transverse b-hadron decay length in the laboratory frame
 - u: the unit vector in the direction of the J/ψ meson p_T
 - S: the sum of the primary and secondary vertex covariance matrices

$$L_{xy} = \frac{\hat{u}^T S^{-1} \hat{r}}{\hat{u}^T S^{-1} \hat{u}} \quad \ell_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T}$$
Dimuon mass distributions consist of
 - Signal shape: Crystal Ball + Gaussian
 - Background shape: Exponential

Dimuon J/ψ distributions consist of
 - Prompt J/ψ component
 Prompt J/ψ MC template modeled with resolution function includes the event-by-event uncertainty of J/ψ
 - Non-prompt J/ψ component
 Non-prompt J/ψ MC template J/ψ distribution as a shape
 - Background component
 Fit events in mass sidebands to sum of 3 exponential decay functions
Signal Extraction
Signal Extraction in separated rapidity

B-fraction = 0.233 ± 0.008

- Poor pseudo-proper decay length distribution originates from y<0
 - B-fraction does not affected

B-fraction = 0.234 ± 0.009
Single muon acceptance

\[p_T^\mu > 3.4 \text{ GeV/c} \]
\[p_T^\mu > (5.8 - 2.4 \times |\eta^\mu|) \text{ GeV/c} \]
\[p_T^\mu > (3.4 - 0.78 \times |\eta^\mu|) \text{ GeV/c} \]

for \(|\eta^\mu| < 1.0 \),
for \(1.0 < |\eta^\mu| < 1.5 \),
for \(1.5 < |\eta^\mu| < 2.4 \).
Trigger efficiency correction

- Different dimuon trigger was used in 2011 PbPb collisions because of High luminosity
- Difference between MC and data is corrected with Tag & Probe method
Reconstruction Efficiency

![Graph 1: CMS Simulation](image1)

- CMS Simulation
- $\sqrt{s} = 2.76$ TeV
- PYTHIA + EvtGen: $B \rightarrow J/\psi$
- Events / (0.03 mm)
- $l_{\text{true}}^{J/\psi}$ (mm)

![Graph 2: Efficiency](image2)

- Efficiency
- Cent. 0-100%
- $|y| < 2.4$
- CMS Simulation
- PbPb $\sqrt{s_{\text{NN}}} = 2.76$ TeV

- PYTHIA+EvtGen+HYDJET
- $Y(1S)$
- Prompt J/ψ
- Non-prompt J/ψ
Systematic Uncertainties

• Signal extraction
 – Mass distribution
 • Alternative shapes for signal, backgrounds are tested
 • Uncertainties of fixed parameters are tested
 – Pseudo-proper decay length distribution
 • Alternative shapes for resolution functions

• Efficiency
 – Tag & probe method for reconstruction efficiency validation
 – Tag & probe method for trigger efficiency correction

<table>
<thead>
<tr>
<th></th>
<th>prompt J/ψ (%)</th>
<th>non-prompt J/ψ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbPb yield extraction</td>
<td>0.2–1.7</td>
<td>0.6–4.5</td>
</tr>
<tr>
<td>pp yield extraction</td>
<td>0.3–1.6</td>
<td>1.7–8.4</td>
</tr>
<tr>
<td>T&P_{recoValidation}*(1−ε_{PbPb}/ε_{pp})</td>
<td>1–9</td>
<td>1–10</td>
</tr>
<tr>
<td>T&P_{triggerCorrection}</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>T_{AA}</td>
<td>4.1–18</td>
<td>4.3–15</td>
</tr>
<tr>
<td>Total</td>
<td>10.8–23</td>
<td>11.1–22.7</td>
</tr>
</tbody>
</table>
- 231 nb$^{-1}$ data reconstructed by heavy-ion algorithm
- Different trigger condition (HLT_L1DoubleMu0 – slightly higher quality)
- Same acceptance and efficiency condition as heavy-ion analysis
b-jet R_{AA}

CMS Preliminary

$\sqrt{s_{NN}} = 2.76$ TeV

100 < p_T < 120 GeV/c

b-tagged sample
- PbPb data
- b-jet template
- c-jet template
- usdg-jet template

χ^2/NDF = 16.8 / 11

100 < p_T < 120 GeV/c

CMS PAS HIN-12-003