Detailed Measurements of Bottomonium Suppression in PbPb Collisions at 2.76 TeV with CMS

Guillermo Breto Rangel

(University of California, Davis) for the CMS Collaboration

Quark Matter conference, Washington DC 14th August, 2012

Quarkonia

1. Quarkonia are very "unusual" hadrons

heavy quark (QQ) bound states stable under strong decay

- heavy: $m_c \simeq 1.2 1.4 \text{ GeV}$, $m_b \simeq 4.6 4.9 \text{ GeV}$
- stable: $M_{c\overline{c}} 2M_D \ll 0$ and $M_{b\overline{b}} 2M_B \ll 0$

What is "usual"?

- light quark $(q\overline{q})$ constituents
- loosely bound, $M_{\rho} 2M_{\pi} \gg 0$, $M_{\Phi} 2M_{K} \simeq 0$
- hadronic size ~ $1/\lambda_{QCD} \simeq 1$ fm, independent of mass

State	J/ψ	Ψ΄	Υ	Υ΄	Υ΄΄
mass [GeV]	3.10	3.68	9.46	10.02	10.36
$\Delta E [GeV]$	0.64	0.05	1.10	0.54	0.20
radius [fm]	0.25	0.45	0.14	0.28	0.39

(At T = 0 Cornell potential gives full spectroscopy)

Relativistic Heavy Ion Physics By F Becattini, P Braun-Munzinger, Rainer Fries, C Gale, J. Schaffner-Bielich

Sequential Melting

✓ High temperature QGP: weaker color binding (Debye screening) (Phys. Lett. B178 (1986) 416) - Real V(T)

 \checkmark Gluons collide with QQ bound states: - shorter lifetime \Rightarrow larger spectral widths

(Landau Damping) (IHEP 0703:054,2007)

- Im V(T)
- \checkmark Dissociation when ReV(T) ~ ImV(T)

✓ Quarkonia: help quantify medium properties (TEMPERATURE)

Bottomonium in Heavy Ions collisions

- ✓ Mass of the b-quark is large
- ✓ No B hadron feed down to Υ
- ✓ nPDF effects smaller
- The <u>relative</u> yields analysis of the excited states / ground state
 - cancels cold nuclear matter effects
 - nPDFs (shadowing, etc)
 - initial parton energy loss
 - final state nuclear absorption (if negligible at LHC energies)
 - carries only effects related to final (hot) medium
- Regeneration is smaller

CMS

Charged Hadron (e.g. Pion) Neutral Hadron (e.g. Neutron)

HCAL

ECA

The Compact MUON Solenoid detector

3.8T Superconducting Solenoid

Hermetic Hadronic Calorimeter (HCAL) [Scintillators & Brass]

Lead tungstate E/M Calorimeter (ECAL)

All Silicon Tracker (Pixels and MicroStrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

Quark Matter 2012, Washington DC

Y candidate in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-12 03:55:57.236106 GMT (04:55:57 CEST) Run / Event: 150887 / 1792020

Hardware L1 Trigger + Software HLT (High Level Trigger) Dimuon trigger rate ~ 30 Hrtz

> Trigger must be: Fast Flexible Efficient (Single Muon Eff. ~95 %) Redundant

9.46 GeV/c² µ+µ- pair mass:

0.06 GeV/c рт:

μ⁻:**p**_T

 $\mu^+:p_T = 4.74 \text{ GeV/c}$ $= 4.70 \, \text{GeV/c}$

$\Upsilon(2S+3S)$ Suppression in 2010

Muon pairs in PbPb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Fitting Model in 2011

Unbinned maximum likelihood fit
Six signal and four background parameters float in the fit

√Signal

-Three resonances modeled by crystalball function: Gaussian resolution and FSR power-law low mass tail

-Mass differences of three resonances are fixed to PDG value

-Float FSR & resolution (fixed in 2010 data analysis)

✓ Background

-Exponential x error-function (Erf describes kinematic turn-on)

✓ Variations of the models checked as systematics.

Simultaneous Fit 2011

 $\Upsilon(2S+3S)/\Upsilon(1S) |_{PbPb}/\Upsilon(2S+3S)/\Upsilon(1S) |_{Pp} = 0.15 \pm 0.05 \pm 0.03$

Observation of 2S+3S relative suppression (significance > 5 σ)

$\Upsilon(nS)/\Upsilon(1S)$ Double ratio

(0 - 100) % Centrality Integrated

$\frac{Y(2S)/Y(1S) _{PbPb}}{Y(2S)/Y(1S) _{pp}}$	=	0.21 ±	$\pm 0.07 \text{ (stat.)} \pm 0.02 \text{ (syst.)}$
$(3S)/Y(1S) _{PbPb}$ $(3S)/Y(1S) _{pp}$	=	0.06 ±	\pm 0.06 (stat.) \pm 0.06 (syst.)
	<	0.17	(95% C.L.).

 $\Upsilon(2S)$ relative ratio to $\Upsilon(1S)$ in PbPb is suppressed compared to same ratio in pp

Systematics Uncertainties:

- ⇒fitting (11%)
- Final state radiation modeling.
- Background modeling:
- like-sign vs track-rotation
- ➡imperfect acceptance+efficiency cancelation: 1%

Y(nS) Absolute Suppression

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{\rm MB}} \frac{N_{\rm PbPb}(\Upsilon(1S))}{N_{pp}(\Upsilon(1S))} \frac{\varepsilon_{pp}}{\varepsilon_{\rm PbPb(cent)}}$$

First time the nuclear modification factors are measured for <u>excited</u> Υ states

 $\begin{array}{lll} R_{AA}(Y(1S)) &=& 0.56 \pm 0.08 \, (\text{stat.}) \pm 0.07 \, (\text{syst.}) \\ R_{AA}(Y(2S)) &=& 0.12 \pm 0.04 \, (\text{stat.}) \pm 0.02 \, (\text{syst.}) \\ R_{AA}(Y(3S)) &=& 0.03 \pm 0.04 \, (\text{stat.}) \pm 0.01 \, (\text{syst.}) \\ &<& 0.10 \quad (95\% \, \text{C.L.}) \, . \end{array}$

 Υ states are suppressed sequentially: $R_{AA}\Upsilon(3S) < R_{AA}\Upsilon(2S) < R_{AA}\Upsilon(1S)$

✓ Note: Inclusive measurement of Y(1S) vs. direct production.
-R_{AA}(Y(1S))-inclusive : Feed-down contributions (χ_b, Y(2S), Y(3S)).
-If feed-down ~50%, R_{AA}(Y(1S))-inclusive is consistent with suppression of excited states only.

Y(nS) R_{AA} vs Centrality

Y(3S) Upper Limit

Experimental Comparisons

Theoretical Comparisons

Summary

Thank You

Special thanks to: Zhen Hu Nuno Leonardo **Torsten Dahms** Jake Anderson Michael Gardner Vineet Kumar Camelia Mironov Dongho Moon Mihee Jo Raphael de Cassagnac Lorenzo Moneta Dilepton Group **CMS** Collaboration **ARC** Members Convenors QM12 Organizers Manuel Calderón

Quark Matter 2012, Washington DC

Back-up

Charmonia Comparisons

Quark Matter 2012, Washington DC

Muon pairs in PbPb and pp at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Quark Matter 2012, Washington DC

The Compact Muon Solenoid

SILICON TRACKER Pixels (100 x 150 µm²) ~1m² ~66M channels Microstrips (80-180µm) ~200m² ~9.6M channels

Pixels Tracker ECAL HCAL Solenoid Steel Yoke Muons

STEEL RETURN YOKE ~13000 tonnes

> SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight Overall diameter Overall length Magnetic field

: 14000 tonnes : 15.0 m : 28.7 m : 3.8 T

HADRON CALORIMETER (HCAL) Brass + plastic scintillator ~7k channels

FORWARD CALORIMETER Steel + quartz fibres

PRESHOWER

~16m² ~137k channels

Silicon strips

~2k channels MUON CHAMBERS

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip & 432 Resistive Plate Chambers

CRYSTAL ELECTROMAGNETIC

CALORIMETER (ECAL) ~76k scintillating PbWO, crystals

Muon reconstruction in CMS

Global muons reconstructed with information from tracker and muon stations

Muons need to overcome the magnetic field and energy loss in the absorber \rightarrow need a minimum momentum of p~3–5 GeV/c to reach the muon

stations

Further muon ID based on track quality (χ^2 , # hits,...)

Quarkonia Suppression

We have established the suppression pattern pinning down medium properties.We have measured the Quarkonia sequential suppression

Quark Matter 2012, Washington DC

Significance

Could background fluctuation produce a result as extreme as observed in data?

- Generate pseudo-experiments following the *null-hypothesis* (i.e. no suppression)
- Fit pseudo-data samples with nominal fit
- Count fraction of occurrences for which the ratio (taken as test statistic) is same or lower than observed:
 - p-value: 0.9%
 - 2.4σ (1-sided Gaussian test)

Acceptance/Efficiency

