Precision measurements of centrality dependence of elliptic flow for identified hadrons in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Hiroshi Masui for the STAR collaboration
Lawrence Berkeley National Laboratory

Abstract

Elliptic flow v_2 is one of the key observables to study the bulk properties at freeze-out as well as hadron production mechanisms in the ultra relativistic heavy ion collisions. It has been observed that Number of Constituent Quark (NCQ) scaling of v_2 holds among measured identified hadrons at $s_{NN} = 62.4$ and 200 GeV in Au + Au collisions at RHIC. The scaling of v_2 strongly indicates that the collectivity develops at the stage where the partonic degrees of freedom are relevant. Studying the NCQ scaling of v_2 as a function of transverse momentum p_T and centrality will shed light on the production mechanisms for hadrons in heavy ion collisions.

We present the measurements of v_2 as a function of p_T for identified π^\pm, K^\pm, K_S^0, p, \bar{p}, Λ and $\bar{\Lambda}$ in Au + Au collisions at $s_{NN} = 200$ GeV from high statistics year 2010 data. The NCQ scaling of v_2 in several different centrality classes is discussed.

Data sets

- Au+Au at $s_{NN} = 200$ GeV
- ~234 M events in 0-80% centrality

Event selection

- $|v_2| < 30$ cm
- $\sqrt{v_2^2 + v_3^2} < 2$ cm
- $|VPD\ v_2 - v_2| < 3$ cm

Centrality determination

- Centrality from uncorrected charged particle multiplicity distribution in $|\eta| < 0.5$ measured in the TPC
- Applied corrections as a function of time, \times-vertex, luminosity
- Trigger inefficiency at peripheral collisions is taken into account by Glauber Monte Carlo simulation with multiplicity fluctuation by negative binomial distribution

Particle identification

- π, K, p
- Momentum dependent mass square $m^2 + dE/dx$ cut in $p_T < 1$ GeV/c
- 2 dimensional signal extraction from n_0 and m^2 (top left figure) in $p_T > 1$ GeV/c
- Relative rise of dE/dx in $p_T > 2.8$ GeV/c (pions)

K$_S^0$, Λ

- Topological reconstruction
- Rotational background method to evaluate combinatorial backgrounds

Number of Constituent Quark Scaling

- v_2, K^\pm, K_S^0, p, \bar{p}, Λ and $\bar{\Lambda}$ in Au + Au collisions at $s_{NN} = 200$ GeV up to $p_T = 8$ GeV/c

Event plane method

- $TPC\ \eta$-sub event plane
 - reconstructed in negative ($-1 < \eta < -0.05$) and positive ($0.05 < \eta < 1$) pseudorapidity η hemispheres
 - Additional 0.05 η gap between particles and event plane to reduce short range $\Delta\eta$ correlation
 - reconstructed for $p_T < 2$ GeV/c

Event plane resolution

- calculated by three independent event planes
- Systematic uncertainties from the resolution by two subevents
- Correction is done event-by-event by using the average resolution in 5% increment of centrality.

Results

- Measure $v_2(p_T)$ up to $p_T = 8$ GeV/c
- Mass ordering below $p_T = 2$ GeV/c, i.e. heavier hadrons have smaller v_2
- Meson/baryon splitting in m_{π_0} above ~0.5 GeV/c

Uncertainties

- Vertical error bars show statistical error only
- Global systematic uncertainty from event plane resolution (plotted only for π)
- Systematic uncertainties on K_S^0 and Λ due to self-correlation subtraction

Summary

- Precision measurements of $v_2(p_T)$ for identified π^\pm, K^\pm, K_S^0, p, \bar{p}, Λ and $\bar{\Lambda}$ in Au + Au collisions at $s_{NN} = 200$ GeV up to $p_T = 8$ GeV/c
- Overall in most centrality bins, the previously observed NCQ scaling of v_2 holds for all hadrons within 10%, in $p_T/n_0 > 1$ GeV/c, $(m_{\pi_0})/n_0 > 0.5$ GeV/c
- In the 10-40% centrality bin, one observes a sizable difference in v_2 between π and Λ. The sources of the discrepancies is currently under study.