Hadronization: Does the **Statistical Model Freeze-Out Curve meet the Lattice Parton-Hadron Phase Boundary?** F. Becattini¹, M. Bleicher², T. Kollegger², M. Mitrovski², T. Schuster^{3*}, J. Steinheimer⁴ and R. Stock³

Motivation

Lattice QCD extrapolation to finite μ_{R} predicts the parton-hadron coexistence line in the (T, μ_{R}) plane.

Assumptions:

Questions:

- Hadronization creates chemical equilibrium freeze-out.
- Hadron abundances freeze out directly at QCD hadronization(?), and survive the hadronic expansion stage(?).

Hadronic Expansion Effects

UrQMD Study of Hadronic Expansion Effects on Hadron Yields

- Employ the recent hybrid version [3] of UrQMD: Hydrodynamic (3+1) phase until energy density < 1 GeV/fm³, plus hadronic emission à la Cooper-Frye.
 - Attach UrQMD hadronic expansion as an "afterburner" stage.

Consider the "Empirical freeze-out curve" [1,2]. *Our aim:*

- Why does the freeze-out curve appear to fall below the lattice curve at higher μ_{ρ} ?
 - Does the hadronic expansion phase REALLY preserve the hadronic multiplicity distribution?
- Compare hadronic yields directly after Cooper-Frye with those after the "afterburner" stage.
- SERIOUS ANNIHILATION EFFECTS in baryon and antibaryon sector! • At SPS: selective annihilation of \overline{p} , $\overline{\Lambda}$ and $\overline{\Xi}$. The rest essentially unaffected.
- At RHIC and LHC: annihilation tends to be symmetric for baryons and antibaryons; $\Lambda/\overline{\Lambda}$ unaffected, while Ω and $\overline{\Omega}$ are enhanced.

Fig. 2: "Survival Plots" at top SPS [2], top RHIC and top LHC [4] energies in central collisions

Statistical Model Analysis

Mod. Fit Hydro+Aft

 $\mu_{\rm D}$ (MeV)

UrQMD at SPS Energies

UrQMD at LHC Energy

Similar UrQMD plus statistical model analysis applied to central Pb+Pb collisions at $\sqrt{s} = 2.7$ TeV.

Fig. 4: The resulting SM freeze-out points in the DOWNWARD SHIFT OF FREEZE-OUT CURVE BY CASCADE STAGE by about 10-15 MeV. Also illustrated: SM fits to UrQMD (Hydro plus afterburner) EXCLUDING \overline{p} , $\overline{\Lambda}$ and $\overline{\Xi}$: The freezeout curve moves upward again (possible remedy?!).

 \rightarrow The empirical freeze-out curve needs revision

NA49 Data

(b) after the afterburner phase.

SM fit to NA49 data [5] in full acceptance central Pb+Pb 17.3 GeV OMITTING \overline{p} , $\overline{\Lambda}$ and $\overline{\Xi}$ from the fit (see [2] for details).

FIT DETERIORATES (SIGNIFICANTLY) WITH AFTERBURNER PHASE

STRIKING SIMILARITY to UrQMD survival plot in Fig. 2. Thus, data shows similar selective antibaryon deficits as predicted by UrQMD.

Fig. 5: Relative deviation of hadron multiplicities measured in Pb+Pb collisions at $\sqrt{s} = 17.3$ GeV from statistical model fit results. The obtained (T,μ_R) with a fit to a suitably restricted hadron sample is close to the hadronization point.

Conclusions

• The hadronic expansion phase does IN FACT distort the hadrochemical equilibrium created at hadronization.

- Indeed, in statistical model fits to UrQMD, the final state (afterburning) effects cause a general downward shift in the (T, μ_{p}) positions of the chemical freeze-out points, by about 10-15 MeV [2] in the SPS energy range. At the LHC, the predicted shift in temperature is of the order of 6-8 MeV with sizeable discrepancies of \overline{p} , $\overline{\Xi}$ and $\overline{\Omega}$.
- ▶ The resulting chemical freeze-out curve thus needs revision.

A refined data analysis with the SM will result in a modified freeze-out curve that will more closely follow recent *lattice calculations [6].*

References

[1] J. Cleymans et al., PRC 73(2006)034905; A. Andronic et al. arXiv:0812.1186. [2] F. Becattini et al., PRC 85(2012)044921. [3] H.Petersen et al., PRC 78(2008)044901; H.Petersen: talk at this Conference. [4] J.Steinheimer et al., arXiv:1203.5302. [5] T.Anticic et al., NA49, PRC 83(2011)014901 and refs. there. [6] G. Enroedi et al., arXiv:1102.1356

¹Universita di Firenze and INFN, ²FIAS Frankfurt, ³Institut für Kernphysik, Universität Frankfurt, ⁴LBL Berkeley, *now at Yale University

3.08.2012