Upgrade of the ALICE Experiment

T. Peitzmann, Utrecht University for the ALICE Collaboration

QM 2012, Washington DC, August 17, 2012
Outline

• Physics Motivation and Strategy
• Core Upgrade
 • ITS Upgrade
 • High Rate Capabilities
 • Physics Performance Examples
• Further Additions (under consideration)
 • VHMPID, MFT, FoCal
• Summary
Physics Motivation

- measurement of heavy-flavour transport parameters
 - study of QGP properties via transport coefficients
- charmonium states down to $p_T=0$
 - statistical hadronization vs. dissociation/recombination
- measurement of low-mass and low-p_T dileptons
 - chiral symmetry restoration, thermal radiation
- jet quenching and fragmentation (with PID)
- heavy-nuclear states

- possible addition: measurement of large rapidity direct photons
 - low-x structure and gluon saturation
Upgrade Strategy

• most physics signals are **rare**, but **untriggerable**

• increase rate capabilities for minimum bias heavy-ion collision
 • upgrade of TPC and ITS, all readout electronics, etc.
 • target: inspection of 50 kHz of minimum bias Pb+Pb
 • factor 100 increase in statistics (for untriggered probes)
 • collect $> 10 \, \text{nb}^{-1}$ of integrated luminosity
 • upgrade in LS2, implies running few years after LS3

• ALICE is **unique** in low-p_T/low-mass measurements and particle identification
 • further enhance capabilities, in particular with **upgraded ITS**
 • closer to beam, less material, better resolution
ITS Upgrade

factor 3 better secondary vertex resolution:
• inner layer as close as possible (R = 2.2 cm)
• less material budget
• thin sensors
• thinner beam pipe (ΔR = 800 µm)

fast readout
• allow 50 kHz rate in Pb+Pb

two technologies investigated
• hybrid pixels
• monolithic active pixels
to be used as all-pixel (7 layers) or pixel(3)+strip(4)
• possibly new Si-strip sensors

talk by R. Lemmon, this session, poster by G. Contin (ID 601)
Limits of Current TPC

- gating grid of readout chambers closed to avoid ion feedback
 - limit space charge to tolerable level
 - effective dead time $\approx 280 \, \mu s$, maximum readout rate: $\approx 3.5 \, \text{kHz}$
- alternative: gating grid always open
 - ion feedback $\approx 10^3 \times$ ions generated in drift volume
 - large space charge effects (of the order of electrical field)
 - space point distortions of order of 1 m - not tolerable!
TPC Upgrade

new readout chambers
• replace MWPC with GEMs
• no gating, small ion feedback
• usage of existing pad-planes possible
 • momentum resolution for constrained tracks not affected

continuous sampling at 10 MHz, ship data unsuppressed off detector
• needs new electronics

extensive R&D program ongoing with lab tests
• confirm low ion feedback
 • goal: 0.25% at gain of 2000
• gain stability?
 ... and in ALICE cavern (November)
• performance under LHC conditions?

poster by T. Gunji (ID 496)
Central Barrel: More Upgrades

- other detector systems under investigation
 - upgrade of PHOS calorimeter
 - better time resolution to reduce background
 - miscellaneous improvements
 - upgrade of trigger detectors (T0/V0)
- upgrade of all readout electronics
 - pipelined readout of major ALICE detectors
- new DAQ/HLT
 - data compression requires on-line calibration and tracking
- common computing framework (DAQ/HLT/Offline)
Event Size and Rates

- event size of major systems, I/O rates of online system
- assume average minbias rate to tape of 20 kHz

<table>
<thead>
<tr>
<th>Detector</th>
<th>Event Size (MByte)</th>
<th>Input to Online System (GByte/s)</th>
<th>Compressed Output to data storage (GByte/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After Zero</td>
<td>After Data Compresssion</td>
<td>Peak</td>
</tr>
<tr>
<td>ITS</td>
<td>0.8</td>
<td>0.2</td>
<td>40</td>
</tr>
<tr>
<td>TPC</td>
<td>20.0</td>
<td>1.0</td>
<td>1000</td>
</tr>
<tr>
<td>TRD (20 kHz)</td>
<td>0.3</td>
<td>0.1</td>
<td>6</td>
</tr>
<tr>
<td>Others (1)</td>
<td>0.5</td>
<td>0.25</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>21.6</td>
<td>1.55</td>
<td>1071</td>
</tr>
</tbody>
</table>

- data reduction for TPC: clustering, reconstruction

<table>
<thead>
<tr>
<th>Data Format</th>
<th>Data Reduction Factor</th>
<th>Event Size (MB Pb-Pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw data</td>
<td>1</td>
<td>700</td>
</tr>
<tr>
<td>Zero suppression (FEE)</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>Clustering (HLT)</td>
<td>5-7</td>
<td>~3</td>
</tr>
<tr>
<td>Remove clusters not associated to relevant tracks (HLT)</td>
<td>2</td>
<td>~1.5</td>
</tr>
<tr>
<td>Data format optimization (HLT)</td>
<td>2-3</td>
<td>< 1</td>
</tr>
</tbody>
</table>
Performance: Open Charm

- strong reduction of background with new ITS
 - improved S/B and significance
- with high rate should make possible for the first time:
 - D^0 measurement at low p_T (0-2 GeV/c) in Pb+Pb
 - Λ_c measurement in Pb+Pb
 - ...

- precision measurements of open charm transport
Dielectron Measurement

- uncertainties with current ITS
 - limited by background subtraction and statistics
- high rate measurement with new ITS
 - more efficient cuts to reduce background, high statistics: allows detailed measurement of low mass dielectrons
Muon Forward Tracker

- 5 circular Si-pixel planes covering muon arm acceptance
- Pixel size ≈ 25 µm x 25 µm
- Technology of choice: monolithic active pixels

Complement muon arm with tracking in front of absorber:
- Secondary vertex measurement
- Better background rejection
- Improved mass resolution

Access prompt vs. secondary J/ψ, possible sensitivity to chiral symmetry via low-mass dileptons
VHMPID

focusing RICH
C$_4$F$_8$O radiator, pressurized
CsI photocathode with MWPC
readout: HMPID FEE (Gassiplex)
possibly dedicated trigger
detector

combine VHMPID with DCAL in
the same acceptance

<table>
<thead>
<tr>
<th>radiator pressure (atm)</th>
<th>1</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>π threshold (GeV/c)</td>
<td>2.5</td>
<td>1.6</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>K threshold (GeV/c)</td>
<td>9</td>
<td>5.6</td>
<td>5.1</td>
<td>4.8</td>
</tr>
<tr>
<td>p threshold (GeV/c)</td>
<td>17</td>
<td>11</td>
<td>9.8</td>
<td>9.1</td>
</tr>
</tbody>
</table>

study hadron PID in jets!
e.g. nuclear modification of
proton fragmentation

poster by A. Harton (ID 499)
Small-x Physics

- enters new regime at LHC
 - larger phase space than at RHIC
- unique opportunity for ALICE
 - use highest rapidity possible ($\eta > 3$), with significant p_T range
 - direct photon measurement cleanest!
 - x-sensitivity, no final state effects
- studies of gluon saturation
 - expect transition from pQCD to CGC
 - p_T and y not precisely known
 - requires significant p_T coverage for direct photons at large y
FoCal

- SiW electromagnetic calorimeter
 - two options for location
 - 3.5 m from IP, $2.5 < \eta < 4.2$
 - 8 m from IP, $3.3 < \eta < 5.0$
 - optional hadronic calorimeter

- 2 technologies
 - low-granularity conventional Si-pads
 - high-granularity $\approx 1 \text{ mm}^2$
 - needed for π^0/γ discrimination
 - likely using MAPS
 - also allows studies of γ-jet correlations

posters by T. Gunji (ID 498, 143), N. Poljak (ID 118)
Summary

• ALICE has strong physics program for precision QGP studies

 • unique in rare low-\(p_T\) probes

 • requires ITS upgrade, enhanced rate capabilities + running beyond LS3

 • significant R&D program for upgrades

• further enhancement of the ALICE setup under investigation, possibly

 • strengthening muon measurement and high \(p_T\) hadron ID

• exploring forward physics
Backup Slides
The ALICE Setup
Kinematic Constraints

• large y prompt photons effective to constrain kinematics to low x

 • obvious in LO (PYTHIA)

• NLO studies in JETPHOX:

 • indicate clear sensitivity of isolated photons, dedicated calculations under way

from D. d’Enterria and J. Rojo, arXiv:1202.1762
Saturation at RHIC and LHC

larger phase space for saturation effects at LHC