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1. Motivation
We investigate the pre-
equilibrium evolution of the QGP
in ultrarelativistic heavy-ion colli-
sions. We first parametrize the ini-
tial particle distribution function
at t = 0 fm/c. Then the subsequent
time-evolution of the distribution
function, up to t = 1 fm/c, is mod-
eled by solving the relativistic
Boltzmann equation.

2. Parametrization
The initial single-particle distribu-
tion function reads as follows:
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• TA and TB are the nuclear
thickness functions

• Parameters are: Q = 0.6GeV,
n = 1.4, m = 5.5, σy = 2.25
and σz = 0.065 fm

• The normalization: we use
K = 0.6; for η/s = 0.08 and
b = 0, emax = 30GeV/fm3 at
0.6 fm/c and z = 0 fm

3. The Transport model BAMPS
• The time evolution is solved

by the Boltzmann approach
for multi parton scatterings
(BAMPS) [1] up to times of
the order of 1 fm/c

• Cross-section adjusted to give
a constant η/s; we use two dif-
ferent impact parameters b

• we consider only massless
particles, binary collisions and
an isotropic cross section

4. Scaling Flow

• Longitudinal velocity vz at r =
0 fm and t = 1.0 fm/c and b =
0

• Scaling flow (vz(z) = z/t)
reached for all choices of η/s

5. Energy Density

• energy density e at b = 0 and
z = 0 fm

• Strong dependence of emax on
the value of η/s

• The larger η/s, the faster en-
ergy density drops

• Shape (e/emax) of the energy
density profile at t = 1.0 fm/c
practically independent of η/s

• Shape of the profile practi-
cally unchanged between t =
0 fm/c and t = 1 fm/c

6. Transverse velocity

• Transverse velocity at z =
0 fm, t = 1.0 fm/c and b = 0

• Significant transverse velocity
established (especially near
the edges)

• Transverse velocity profiles al-
most independent of η/s

7. Shear-Stress Tensor

• Longitudinal and transverse
components of the shear-
stress tensor (over thermody-
namic pressure) at b = 0 and
z = 0 fm at t = 1 fm/c

• Strong deviations from the
Navier-Stokes values (espe-
cially near the edges)

• NS-values overestimate the
shear-stress tensor.

• Relative deviation from the
NS-values at two different
times

8. Eccentricities at early times

• time-evolution of momentum
space εp and spatial εx eccen-
tricities for non-central colli-
sions b = 7 at t = 1 fm/c

εp =

∫
dxdy(T xx − T yy)∫
dxdy(T xx + T yy)

εx =

∫
dxdy e(τ, x, y)(y2 − x2)∫
dxdy e(τ, x, y)(y2 + x2)

• Spatial eccentricity changes
only slightly

• momentum eccentricity de-
pends strongly on value of η/s
(although transverse velocity
almost independent of η/s)

Conclusions
• We studied the pre-thermal

evolution of the QGP using
BAMPS

• Transverse velocity and the
shape of the energy den-
sity profile after the pre-
equilibrium phase are practi-
cally independent of η/s

• The shear stress tensor devel-
oped in the first fm of evolu-
tion is non-zero and can de-
viate from the Navier-Stokes
prediction

• For non-central collisions we
found that a considerable mo-
mentum anisotropy can al-
ready be generated in the pre-
thermal evolution of the QGP
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