1. Motivation

Jets, collimated sprays of particles associated with hard partons, are an important tool in testing QCD and probing hot and dense nuclear matter created in high energy heavy-ion collisions. Jets enable study the evolution from hard-scattering through fragmentation to hadronisation and test modification of these processes in presence of nuclear medium with respect to measurements in vacuum. The unmodified baseline can be acquired from jet measurements in proton-proton collisions. Here we focus on deconvoluting detector effects in measured jet spectra obtained from charged particle tracks in proton-proton collisions measured by the ALICE detector system at the CERN LHC.

2. ALICE

Schematic layout of ALICE detector system

3. Selection

Data
- minimum bias pp collisions
- 2010 $\sqrt{s} = 7$ TeV
- from ITS and TPC
- pr > 0.15 GeV/c
- |η| < 0.9

Jet reconstruction
- Anti-k_T and k_T algorithms [1]
- R = 0.2, 0.4 or 0.6
- |η| < 0.9 – R

Simulation
- Pythia6 Perugia-0 tune
- full GEANT detector simulation

4. Raw jet spectra

- charged jet yields from 7 TeV proton-proton collisions

5. Deconvolution algorithms

Bin-by-bin correction
- compares simulated spectra on the level of Monte Carlo generator and detector
- bins without signal cannot gain signal
- depends on shape of simulated jet spectra

Bayesian unfolding [2]
- utilizes Bayes’ theorem to invert response matrix obtained from simulation
- independent of shape of simulated jet spectra
- bins without signal can gain signal

P (C_I|E_J) = P (E_J|C_I) P (C_I) \sum J P (E_J|C_J) P (C_J)

Singular value decomposition (SVD) [3]
- of response matrix to orthogonal and diagonal matrices
- transformed to system of linear equations

6. Detector response matrix

- distribution of reconstructed against matched generated jet momenta
- obtained from a Pythia+Geant simulation of the ALICE detector
- geometrical matching, i.e. jets close in $\eta - \phi$
- matching jets on detector level to jets on level of Monte Carlo

7. Unfolding performance

- efficiencies of matched simulated jets in acceptance to reconstructed jets
- inefficiency at low pr_T is mainly caused by requirement of $p_T^{\text{jet}} > 5$ GeV/c
- comparing unfolded and generated yields of simulated data

8. Unfolding of raw yields

- we unfold raw yields using Bayesian and SVD methods, and correct using factors obtained on bin-by-bin basis, and refolding shows that we are within 10% from raw yields

9. Conclusion

We reconstructed raw spectra of charged jets in 7 TeV pp collisions in the ALICE detector system and observed that bin-by-bin corrections, SVD and Bayesian unfolding produce consistent spectra deconvoluted to both charged and full jet spectra for II cases.

10. References

11. Acknowledgment

This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. GC509/352/10/10 and by Ministry of education, youth and sports, grant No. LA00025